femT-data commited on
Commit
d5d1d14
·
verified ·
1 Parent(s): 951fabf

End of training

Browse files
Files changed (2) hide show
  1. README.md +146 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: Qwen/Qwen2.5-7B-Instruct
8
+ model-index:
9
+ - name: qwen2.5-7B-instruct-ner-tuned
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: Qwen/Qwen2.5-7B-Instruct
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: true
29
+ strict: false
30
+
31
+ datasets:
32
+ - path: data.jsonl
33
+ ds_type: json
34
+ type: alpaca
35
+
36
+ dataset_prepared_path:
37
+ val_set_size: 0.05
38
+ output_dir: ./outputs/lora-out
39
+ hub_model_id: femT-data/qwen2.5-7B-instruct-ner-tuned
40
+
41
+ sequence_len: 4096 # supports up to 8192
42
+ sample_packing: false
43
+ pad_to_sequence_len:
44
+
45
+ adapter: qlora
46
+ lora_model_dir:
47
+ lora_r: 32
48
+ lora_alpha: 16
49
+ lora_dropout: 0.05
50
+ lora_target_linear: true
51
+ lora_fan_in_fan_out:
52
+
53
+ wandb_project:
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_name:
57
+ wandb_log_model:
58
+
59
+ gradient_accumulation_steps: 4
60
+ micro_batch_size: 2
61
+ num_epochs: 1
62
+ optimizer: adamw_bnb_8bit
63
+ lr_scheduler: cosine
64
+ learning_rate: 0.0002
65
+
66
+ train_on_inputs: false
67
+ group_by_length: false
68
+ bf16: auto
69
+ fp16:
70
+ tf32: false
71
+
72
+ gradient_checkpointing: true
73
+ early_stopping_patience:
74
+ resume_from_checkpoint:
75
+ local_rank:
76
+ logging_steps: 1
77
+ xformers_attention:
78
+ flash_attention:
79
+
80
+ warmup_steps: 10
81
+ evals_per_epoch: 1
82
+ eval_table_size:
83
+ eval_max_new_tokens: 128
84
+ saves_per_epoch: 1
85
+ debug:
86
+ deepspeed:
87
+ weight_decay: 0.0
88
+ fsdp:
89
+ fsdp_config:
90
+ special_tokens:
91
+
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # qwen2.5-7B-instruct-ner-tuned
97
+
98
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset.
99
+ It achieves the following results on the evaluation set:
100
+ - Loss: 0.1159
101
+
102
+ ## Model description
103
+
104
+ More information needed
105
+
106
+ ## Intended uses & limitations
107
+
108
+ More information needed
109
+
110
+ ## Training and evaluation data
111
+
112
+ More information needed
113
+
114
+ ## Training procedure
115
+
116
+ ### Training hyperparameters
117
+
118
+ The following hyperparameters were used during training:
119
+ - learning_rate: 0.0002
120
+ - train_batch_size: 2
121
+ - eval_batch_size: 2
122
+ - seed: 42
123
+ - distributed_type: multi-GPU
124
+ - num_devices: 4
125
+ - gradient_accumulation_steps: 4
126
+ - total_train_batch_size: 32
127
+ - total_eval_batch_size: 8
128
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
129
+ - lr_scheduler_type: cosine
130
+ - lr_scheduler_warmup_steps: 10
131
+ - num_epochs: 1
132
+
133
+ ### Training results
134
+
135
+ | Training Loss | Epoch | Step | Validation Loss |
136
+ |:-------------:|:------:|:----:|:---------------:|
137
+ | 0.1314 | 0.9630 | 13 | 0.1159 |
138
+
139
+
140
+ ### Framework versions
141
+
142
+ - PEFT 0.11.1
143
+ - Transformers 4.43.1
144
+ - Pytorch 2.3.0+cu121
145
+ - Datasets 2.19.1
146
+ - Tokenizers 0.19.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdbc0379ce48fe4feab575b8f71c4e1cc5d8261a436d65e50ea008dc34b3b2f0
3
+ size 161622314