File size: 7,527 Bytes
afc04f6
 
 
 
 
 
 
 
7ab101a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afc04f6
 
 
 
188e091
a67ca9a
8259969
b6f0745
7e8a13b
b6f0745
afc04f6
 
 
 
a67ca9a
afc04f6
a67ca9a
 
afc04f6
b6f0745
 
afc04f6
 
 
ff3ae05
 
 
 
afc04f6
 
 
 
 
7e8a13b
afc04f6
7e8a13b
afc04f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b2c8ee
 
 
afc04f6
 
 
 
 
 
 
 
 
 
7e8a13b
afc04f6
188e091
afc04f6
 
 
 
 
8259969
afc04f6
69b3ecf
 
7ab101a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
license: apache-2.0
library_name: transformers
tags:
- juanako
- UNA
- cybertron
- fbl
datasets:
- fblgit/tree-of-knowledge
- Open-Orca/SlimOrca-Dedup
- allenai/ultrafeedback_binarized_cleaned
model-index:
- name: una-cybertron-7b-v2-bf16
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 68.26
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.85
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.23
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 64.63
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 55.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
      name: Open LLM Leaderboard
---

# Model Card for una-cybertron-7b-v2-bf16 (UNA: Uniform Neural Alignment)

We strike back, introducing **Cybertron 7B v2** a 7B MistralAI based model, best on it's series. Trained on SFT, DPO and UNA (Unified Neural Alignment) on multiple datasets.
He scores [EXACTLY](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v2-bf16)  **#1** with **69.67**+ score on HF LeaderBoard board, **#8** ALL SIZES top score.

* v1 Scoring **#1** at 2 December 2023 with 69.43 ..few models were releasse .. but only 1 can survive: CYBERTRON!
* v2 Scoring **#1** at 5 December 2023 with 69.67

  
| Model | Average | ARC (25-s) | HellaSwag (10-s) | MMLU (5-s) | TruthfulQA (MC) (0-s) | Winogrande (5-s) | GSM8K (5-s) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 60.97 | 59.98  | 83.31  | 64.16  | 42.15 | 78.37 | 37.83 |
| [Intel/neural-chat-7b-v3-2](https://huggingface.co/Intel/neural-chat-7b-v3-2) | 68.29 | 67.49  | 83.92  | 63.55  | 59.68 | 79.95 | 55.12 |
| [perlthoughts/Chupacabra-7B-v2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2) | 63.54 | 66.47 | 85.17 | 64.49  | 57.6 | 79.16 | 28.35 |
| [fblgit/una-cybertron-7b-v1-fp16](https://huggingface.co/fblgit/una-cybertron-7b-v1-fp16) | **69.49** | **68.43** | **85.85** | 63.34  | **63.28** | **80.90** | **55.12** |
| [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16) | **69.67** | **68.26** | **85.?4** | 63.23  | **64.63** | **81.37** | **55.04** |

The model excels in mathematics, logic, reasoning, overall very smart. He can make a deep reasoning over the context and prompt, it gives the impression of not missing details around.


## Model Details

Adiestrated with UNA: Uniform Neural Alignment technique (paper going out soon). 
* What is **NOT** UNA? Its not a merged layers model. Is not SLERP or SLURP or similar.
* What **is** UNA? A formula & A technique to *TAME* models
* When will be released the code and paper? When have time, contribute and it'll be faster.

### Model Description

- **Developed by:** [juanako.ai](https://juanako.ai)
- **Author:** [Xavier M.]([email protected])
- **Investors** [CONTACT HERE]([email protected])
- **Model type:** MistralAI 7B
- **Funded by Cybertron's H100's** with few hours training.

### Prompt
The model is very good, works well on almost any prompt but ChatML format and Alpaca System gets the best
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!

### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```
Using Exllamav2_HF set alpha=2.5 for 16K Context

**Users also report that exllamav2_HF loader, 8bpw-h8 exl2 quant, simple-1 preset provides good results**


### Framework versions

- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1

### Citations
    If you find Cybertron, Juanako or any of our models useful, specially if you use it for your big brand.. or you clone/merge my modelsm, cite please:
```
@misc{unacybertron7b,
  title={Cybertron: Uniform Neural Alignment}, 
  author={Xavier Murias},
  year={2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16}},
}
```

Special thanks to @TheBloke & @bartowski for converting the models and their support to the community. Thank you!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v2-bf16)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |69.67|
|AI2 Reasoning Challenge (25-Shot)|68.26|
|HellaSwag (10-Shot)              |85.85|
|MMLU (5-Shot)                    |63.23|
|TruthfulQA (0-shot)              |64.63|
|Winogrande (5-shot)              |80.98|
|GSM8k (5-shot)                   |55.04|