File size: 7,527 Bytes
afc04f6 7ab101a afc04f6 188e091 a67ca9a 8259969 b6f0745 7e8a13b b6f0745 afc04f6 a67ca9a afc04f6 a67ca9a afc04f6 b6f0745 afc04f6 ff3ae05 afc04f6 7e8a13b afc04f6 7e8a13b afc04f6 8b2c8ee afc04f6 7e8a13b afc04f6 188e091 afc04f6 8259969 afc04f6 69b3ecf 7ab101a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
license: apache-2.0
library_name: transformers
tags:
- juanako
- UNA
- cybertron
- fbl
datasets:
- fblgit/tree-of-knowledge
- Open-Orca/SlimOrca-Dedup
- allenai/ultrafeedback_binarized_cleaned
model-index:
- name: una-cybertron-7b-v2-bf16
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.23
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.63
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/una-cybertron-7b-v2-bf16
name: Open LLM Leaderboard
---
# Model Card for una-cybertron-7b-v2-bf16 (UNA: Uniform Neural Alignment)
We strike back, introducing **Cybertron 7B v2** a 7B MistralAI based model, best on it's series. Trained on SFT, DPO and UNA (Unified Neural Alignment) on multiple datasets.
He scores [EXACTLY](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v2-bf16) **#1** with **69.67**+ score on HF LeaderBoard board, **#8** ALL SIZES top score.
* v1 Scoring **#1** at 2 December 2023 with 69.43 ..few models were releasse .. but only 1 can survive: CYBERTRON!
* v2 Scoring **#1** at 5 December 2023 with 69.67
| Model | Average | ARC (25-s) | HellaSwag (10-s) | MMLU (5-s) | TruthfulQA (MC) (0-s) | Winogrande (5-s) | GSM8K (5-s) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 60.97 | 59.98 | 83.31 | 64.16 | 42.15 | 78.37 | 37.83 |
| [Intel/neural-chat-7b-v3-2](https://huggingface.co/Intel/neural-chat-7b-v3-2) | 68.29 | 67.49 | 83.92 | 63.55 | 59.68 | 79.95 | 55.12 |
| [perlthoughts/Chupacabra-7B-v2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2) | 63.54 | 66.47 | 85.17 | 64.49 | 57.6 | 79.16 | 28.35 |
| [fblgit/una-cybertron-7b-v1-fp16](https://huggingface.co/fblgit/una-cybertron-7b-v1-fp16) | **69.49** | **68.43** | **85.85** | 63.34 | **63.28** | **80.90** | **55.12** |
| [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16) | **69.67** | **68.26** | **85.?4** | 63.23 | **64.63** | **81.37** | **55.04** |
The model excels in mathematics, logic, reasoning, overall very smart. He can make a deep reasoning over the context and prompt, it gives the impression of not missing details around.
## Model Details
Adiestrated with UNA: Uniform Neural Alignment technique (paper going out soon).
* What is **NOT** UNA? Its not a merged layers model. Is not SLERP or SLURP or similar.
* What **is** UNA? A formula & A technique to *TAME* models
* When will be released the code and paper? When have time, contribute and it'll be faster.
### Model Description
- **Developed by:** [juanako.ai](https://juanako.ai)
- **Author:** [Xavier M.]([email protected])
- **Investors** [CONTACT HERE]([email protected])
- **Model type:** MistralAI 7B
- **Funded by Cybertron's H100's** with few hours training.
### Prompt
The model is very good, works well on almost any prompt but ChatML format and Alpaca System gets the best
```
<|im_start|>system
- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.<|im_end|>
<|im_start|>user
Explain QKV<|im_end|>
<|im_start|>assistant
```
```
### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!
### Human: Explain QKV
### Assistant:
```
```
[Round <|round|>]
问:Explain QKV
答:
```
```
[Round <|round|>]
Question:Explain QKV
Answer:
```
```
Question:Explain QKV
Answer:
```
Using Exllamav2_HF set alpha=2.5 for 16K Context
**Users also report that exllamav2_HF loader, 8bpw-h8 exl2 quant, simple-1 preset provides good results**
### Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
### Citations
If you find Cybertron, Juanako or any of our models useful, specially if you use it for your big brand.. or you clone/merge my modelsm, cite please:
```
@misc{unacybertron7b,
title={Cybertron: Uniform Neural Alignment},
author={Xavier Murias},
year={2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16}},
}
```
Special thanks to @TheBloke & @bartowski for converting the models and their support to the community. Thank you!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__una-cybertron-7b-v2-bf16)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.67|
|AI2 Reasoning Challenge (25-Shot)|68.26|
|HellaSwag (10-Shot) |85.85|
|MMLU (5-Shot) |63.23|
|TruthfulQA (0-shot) |64.63|
|Winogrande (5-shot) |80.98|
|GSM8k (5-shot) |55.04|
|