--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B-Instruct tags: - generated_from_trainer model-index: - name: pancho-v1-qw25-3B-UNAMGS results: [] datasets: - Magpie-Align/Magpie-Pro-MT-300K-v0.1 - Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-Filtered language: - en --- # pancho-v1-qw25-3B-UNAMGS This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct): It achieves the following results on the evaluation set: - Loss: 0.6555 ![pancho-v1-qw25-3B-UNAMGS](https://huggingface.co/fblgit/pancho-v1-qw25-3B-UNAMGS/resolve/main/pancho-v1-qw25-3B.png) [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl) ## Model description Trained with MagPie: - Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-Filtered - Magpie-Align/Magpie-Pro-MT-300K-v0.1 UNA on MLPs `4, 10, 16, 22, 28` MGS on 3 Scales. Following https://arxiv.org/abs//2410.21228 facts. ## License & Derivatives Any derivative (sft, merges, etc) using **ANY** layer from this model **MUST** include either `UNA` or `MGS` or `PANCHO` in their model name in order to obtain a LICENSE for derivatives of this model. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 256 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2127 | 0.0015 | 1 | 0.8711 | | 0.9905 | 0.0509 | 35 | 0.7338 | | 0.9685 | 0.1019 | 70 | 0.7114 | | 0.9554 | 0.1528 | 105 | 0.6994 | | 0.9077 | 0.2037 | 140 | 0.6915 | | 0.9149 | 0.2547 | 175 | 0.6859 | | 0.9363 | 0.3056 | 210 | 0.6795 | | 0.8975 | 0.3566 | 245 | 0.6745 | | 0.9095 | 0.4075 | 280 | 0.6709 | | 0.9216 | 0.4584 | 315 | 0.6681 | | 0.9143 | 0.5094 | 350 | 0.6666 | | 0.8879 | 0.5603 | 385 | 0.6645 | | 0.9194 | 0.6112 | 420 | 0.6625 | | 0.9123 | 0.6622 | 455 | 0.6615 | | 0.9056 | 0.7131 | 490 | 0.6591 | | 0.9172 | 0.7641 | 525 | 0.6578 | | 0.886 | 0.8150 | 560 | 0.6566 | | 0.9155 | 0.8659 | 595 | 0.6568 | | 0.9029 | 0.9169 | 630 | 0.6560 | | 0.8942 | 0.9678 | 665 | 0.6555 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.3.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1#