--- language: - it - en tags: - pretrained - pytorch - causal-lm - minerva - autoround - intel-autoround - woq - gptq - intel license: apache-2.0 model_name: Minerva 350M base v1.0 base_model: - sapienzanlp/Minerva-350M-base-v1.0 inference: false model_creator: sapienzanlp datasets: - uonlp/CulturaX pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [sapienzanlp/Minerva-350M-base-v1.0](https://huggingface.co/sapienzanlp/Minerva-350M-base-v1.0) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Symmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.3 Note: this INT4 version of Minerva-350M-base-v1.0 has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "sapienzanlp/Minerva-350M-base-v1.0" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/sapienzanlp_Minerva-350M-base-v1.0-autoround-int4-gs128-sym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/) ## Disclaimer This quantized model comes with no warranty. It has been developed only for research purposes.