fats-fme commited on
Commit
b6b4dc7
·
verified ·
1 Parent(s): 29af232

End of training

Browse files
Files changed (2) hide show
  1. README.md +162 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: jhflow/mistral7b-lora-multi-turn-v2
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 8621c6f3-fff3-4f7c-95a1-d9d5230042d5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: jhflow/mistral7b-lora-multi-turn-v2
22
+ bf16: auto
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 66b824a5dd6edd7c_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/66b824a5dd6edd7c_train_data.json
31
+ type:
32
+ field_instruction: filled_template
33
+ field_output: race
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ ddp_find_unused_parameters: false
39
+ distributed_type: ddp
40
+ early_stopping_patience: null
41
+ env:
42
+ CUDA_VISIBLE_DEVICES: 0,1
43
+ MASTER_ADDR: localhost
44
+ MASTER_PORT: '29500'
45
+ NCCL_DEBUG: INFO
46
+ NCCL_IB_DISABLE: '0'
47
+ NCCL_P2P_DISABLE: '0'
48
+ NCCL_P2P_LEVEL: NVL
49
+ PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
50
+ WORLD_SIZE: '2'
51
+ eval_max_new_tokens: 128
52
+ eval_table_size: null
53
+ evals_per_epoch: 4
54
+ flash_attention: false
55
+ fp16: false
56
+ gradient_accumulation_steps: 8
57
+ gradient_checkpointing: true
58
+ group_by_length: true
59
+ hub_model_id: fats-fme/8621c6f3-fff3-4f7c-95a1-d9d5230042d5
60
+ hub_repo: null
61
+ hub_strategy: checkpoint
62
+ hub_token: null
63
+ learning_rate: 0.0002
64
+ load_in_4bit: false
65
+ load_in_8bit: true
66
+ logging_steps: 1
67
+ lora_alpha: 32
68
+ lora_dropout: 0.05
69
+ lora_fan_in_fan_out: null
70
+ lora_model_dir: null
71
+ lora_r: 16
72
+ lora_target_linear: true
73
+ lr_scheduler: cosine
74
+ max_memory_MB: 60000
75
+ max_steps: -1
76
+ micro_batch_size: 2
77
+ mlflow_experiment_name: /tmp/66b824a5dd6edd7c_train_data.json
78
+ model_type: AutoModelForCausalLM
79
+ num_devices: 2
80
+ num_epochs: 1
81
+ optimizer: adamw_torch
82
+ output_dir: miner_id_24
83
+ pad_to_sequence_len: true
84
+ resume_from_checkpoint: null
85
+ s2_attention: null
86
+ sample_packing: false
87
+ saves_per_epoch: 4
88
+ sequence_len: 2048
89
+ strict: false
90
+ tf32: true
91
+ tokenizer_type: AutoTokenizer
92
+ train_on_inputs: false
93
+ trust_remote_code: true
94
+ val_set_size: 0.05
95
+ wandb_entity: null
96
+ wandb_mode: online
97
+ wandb_name: 8621c6f3-fff3-4f7c-95a1-d9d5230042d5
98
+ wandb_project: Gradients-On-Demand
99
+ wandb_run: your_name
100
+ wandb_runid: 8621c6f3-fff3-4f7c-95a1-d9d5230042d5
101
+ warmup_steps: 50
102
+ world_size: 2
103
+ xformers_attention: true
104
+
105
+ ```
106
+
107
+ </details><br>
108
+
109
+ # 8621c6f3-fff3-4f7c-95a1-d9d5230042d5
110
+
111
+ This model is a fine-tuned version of [jhflow/mistral7b-lora-multi-turn-v2](https://huggingface.co/jhflow/mistral7b-lora-multi-turn-v2) on the None dataset.
112
+ It achieves the following results on the evaluation set:
113
+ - Loss: nan
114
+
115
+ ## Model description
116
+
117
+ More information needed
118
+
119
+ ## Intended uses & limitations
120
+
121
+ More information needed
122
+
123
+ ## Training and evaluation data
124
+
125
+ More information needed
126
+
127
+ ## Training procedure
128
+
129
+ ### Training hyperparameters
130
+
131
+ The following hyperparameters were used during training:
132
+ - learning_rate: 0.0002
133
+ - train_batch_size: 2
134
+ - eval_batch_size: 2
135
+ - seed: 42
136
+ - distributed_type: multi-GPU
137
+ - num_devices: 2
138
+ - gradient_accumulation_steps: 8
139
+ - total_train_batch_size: 32
140
+ - total_eval_batch_size: 4
141
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 50
144
+ - num_epochs: 1
145
+
146
+ ### Training results
147
+
148
+ | Training Loss | Epoch | Step | Validation Loss |
149
+ |:-------------:|:------:|:----:|:---------------:|
150
+ | 0.0 | 0.0036 | 1 | nan |
151
+ | 0.0 | 0.2513 | 69 | nan |
152
+ | 0.0 | 0.5025 | 138 | nan |
153
+ | 0.0 | 0.7538 | 207 | nan |
154
+
155
+
156
+ ### Framework versions
157
+
158
+ - PEFT 0.13.2
159
+ - Transformers 4.46.0
160
+ - Pytorch 2.5.0+cu124
161
+ - Datasets 3.0.1
162
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6656dc8429316e09ce9fa5126927358f8ceb1190c77cc015ad97adf5fd038249
3
+ size 167934026