ppo-lunar-lander-v2 / config.json
farrison-hord's picture
Upload PPO LunarLander-v2 trained agent
7332483 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ca8b47b7c70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ca8b47b7d00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ca8b47b7d90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ca8b47b7e20>", "_build": "<function ActorCriticPolicy._build at 0x7ca8b47b7eb0>", "forward": "<function ActorCriticPolicy.forward at 0x7ca8b47b7f40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ca8b47c4040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ca8b47c40d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ca8b47c4160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ca8b47c41f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ca8b47c4280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ca8b47c4310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ca8b50c7c80>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712865437978179228, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAbMQL7U/Is+CeOfPa5bpL72/4y9DUnAPQAAAAAAAAAAOpVXPgKOaD5LUlK+4OSivg0nQDsYTY29AAAAAAAAAABmRSM9kvkJPzg/bz2X4x+/k7kaPTKGwzwAAAAAAAAAAKoCkL5S8Ic+IBPJPuul2b4pqUi8G7VZPQAAAAAAAAAAzcnHvY/+ULq1GIy3HkusMbaoibsKQ6I2AACAPwAAgD/ahMs9j8IBN3pqj7ZeN1ww648NOyOFqzUAAAAAAACAP/Ium76GNJI/CHXevgYe4b4/Lr6+gvETvQAAAAAAAAAAGkS0vcMxarqa2GA4YpIQt88xoLozYXi3AAAAAAAAgD+asI89wKC7PwZRkT5ltVG+BbqwPQD/uT0AAAAAAAAAALoAHr52yDO8+NnFOQ1yATduhJ096kP0uAAAgD8AAIA/2gscvklJKz2Izfg9F2xcvnp+Ebwb+do8AAAAAAAAAACzRiU+qbRgvIqjebuPFt27RQfGvcwYt7wAAIA/AACAPxpvfj32gEC6WBhkub4GY7gXaDI7k7eSOAAAgD8AAIA/hmEBvr+PJD4eZMS8s7SRvrOSr719NWQ9AAAAAAAAAABT5ia++yGPvP3Wz7k7xa+39mL6PXerBDkAAIA/AACAP+AJST5cUA4+CzNSvlwcgr6MpyK8BuE7vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4OFzltCRiMAWyUS7iMAXSUR0CgpvTC1qnFdX2UKGgGR0Bw6LPUrkKeaAdL3WgIR0CgpvtCqp97dX2UKGgGR0BgT+Ur08NhaAdN6ANoCEdAoKg1EAo5P3V9lChoBkdAbgxQ3PzFuWgHS9BoCEdAoKhVkQPI4nV9lChoBkdAb/i4dZJTVGgHS8BoCEdAoKhkETxoZnV9lChoBkdAcfdf+0gKW2gHS/BoCEdAoKhtadMCcXV9lChoBkdAcQO5CWu5jGgHS/loCEdAoKjPj2i+L3V9lChoBkdAcvYvduYQa2gHS9xoCEdAoKjz7bcoIHV9lChoBkdAcfSDohY/3WgHS9VoCEdAoKkhsImgJ3V9lChoBkdAcE8ZG8VYZGgHS7toCEdAoKkndl/YrnV9lChoBkdAci4osZpBX2gHTQABaAhHQKCpMAU+LWJ1fZQoaAZHQG+/wI+nqFBoB0ugaAhHQKCpRKsdT5x1fZQoaAZHQHBBE6tDD0loB0vmaAhHQKCpc8YAKfF1fZQoaAZHQHITOd9Ujs5oB0vMaAhHQKCpnL1VYIV1fZQoaAZHQHGJPh2nsLRoB0vVaAhHQKCp0eT3Zf51fZQoaAZHQHJIPbblA/toB00aAWgIR0CgqusLF4s3dX2UKGgGR0BxS3gflp49aAdL2GgIR0Cgq1Vy/9HddX2UKGgGR0BxJA3o9s7/aAdL12gIR0Cgq2EmhM8HdX2UKGgGR0Bxlz7di2DyaAdL7GgIR0Cgq4BoM8YAdX2UKGgGR0BtspgXuVopaAdL0mgIR0Cgq/N3W4EwdX2UKGgGR0BxjLzbvgFYaAdL3WgIR0Cgq/UPYnOTdX2UKGgGR0Bs9cyk9ECvaAdLxmgIR0CgrBqHwgDBdX2UKGgGR0ByIqmfoRqXaAdL1mgIR0CgrDF4C6pYdX2UKGgGR0By+WXw9aEBaAdNEAFoCEdAoKxIuf29MHV9lChoBkdAcXaNZeRgZ2gHS91oCEdAoKxcJ8fFJnV9lChoBkdAbxmAiFCb+mgHS79oCEdAoKyYc3l0YHV9lChoBkdAcnUFd9lVcWgHS85oCEdAoKybWEsasXV9lChoBkdAcObhdMTN+2gHS+RoCEdAoKy7AN5MUXV9lChoBkdAcphJ+2E0zmgHTQQBaAhHQKCs2EFnqV11fZQoaAZHQGTjc3l0YCRoB03oA2gIR0CgrYI5o4+9dX2UKGgGR0BxG4kKNQ0oaAdLx2gIR0CgrkIRqXWwdX2UKGgGR0Bx+9HmRvFWaAdL22gIR0CgroSLIgeSdX2UKGgGR0BxQrFaSs8xaAdL0WgIR0Cgrok5IYm+dX2UKGgGR0ByhtJiAlOXaAdLzWgIR0Cgrud4eLeidX2UKGgGR0Bu0UFINEw4aAdLv2gIR0CgrwoNmUW3dX2UKGgGR0BxkaJ40Mw2aAdL12gIR0CgrxFZowmFdX2UKGgGR0Bw8qAhB7eEaAdLvmgIR0CgrxrhR64UdX2UKGgGR0Bvv4iLVFx5aAdNIQFoCEdAoK8p8jRlYnV9lChoBkdAcTnmGM4tH2gHS7JoCEdAoK8uV7hNunV9lChoBkdAbpbie/YapGgHS9BoCEdAoK8yhcqvvHV9lChoBkdAY2/4zrNW2mgHTegDaAhHQKCvmBMi8nN1fZQoaAZHQHME72QGOdZoB0vbaAhHQKCvygIQe3h1fZQoaAZHQHJqZNKyv9toB0vmaAhHQKCvzSncclx1fZQoaAZHQHHIujynUDxoB0vhaAhHQKCv//H5rQB1fZQoaAZHQHJeOO801qFoB006AWgIR0CgsGcNhE0BdX2UKGgGR0BwrWKQ7tAtaAdL02gIR0CgsGaUaAFxdX2UKGgGR0BxA2p5u63BaAdLvWgIR0CgsLYp+c6OdX2UKGgGR0Btk8mjTKDDaAdLumgIR0CgsTZw4sErdX2UKGgGR0BwFi+evpyIaAdL02gIR0CgsTTw2ETQdX2UKGgGR0Bxm8c1fmcOaAdLwWgIR0CgsXXyRSxadX2UKGgGR0BvdjdSEUTMaAdLx2gIR0CgsbSuhbnpdX2UKGgGR0By9iNbTtsvaAdNBwFoCEdAoLIFtZV4o3V9lChoBkdAb8EIdELH/GgHS+JoCEdAoLIVc8kleHV9lChoBkdAcrlHdXT3I2gHTQIBaAhHQKCylLV4HHF1fZQoaAZHQHCMnXAdn01oB0v/aAhHQKCymbsF+ux1fZQoaAZHQHAvTMvAXVNoB0vaaAhHQKCyrmCiAUd1fZQoaAZHQHFZPGMn7YVoB0vcaAhHQKCzBj5sTFl1fZQoaAZHQHP1CH2ys0ZoB0vTaAhHQKCzIbEP1+R1fZQoaAZHQHMOcfvF3pxoB0vvaAhHQKCzWYa5wwV1fZQoaAZHQHOP9fTkQwtoB0u7aAhHQKCz27aqS5l1fZQoaAZHQHARZKe05U9oB0vaaAhHQKCz9CXQdCF1fZQoaAZHQHH7+JDVpbloB0voaAhHQKC0PKwpvxZ1fZQoaAZHQG9JTcAR02doB0vGaAhHQKC0xgNwzch1fZQoaAZHQHHOUfkmx+toB0uvaAhHQKC080LMLWt1fZQoaAZHQHF1nJ9y925oB0vhaAhHQKC1T8WsRxt1fZQoaAZHQHIOnV5KODJoB0utaAhHQKC1aYUnG851fZQoaAZHQHKMQoG6f8NoB0vhaAhHQKC1p/smfGx1fZQoaAZHQHBPo/Z/Tb5oB0vFaAhHQKC1zrhzeXR1fZQoaAZHQHEYjJdSl31oB0u1aAhHQKC2Cs7MgU11fZQoaAZHQHHAItpVS4xoB0u7aAhHQKC2Q9GI9DB1fZQoaAZHQG+wd+ocaOxoB0u2aAhHQKC2pcmjTKF1fZQoaAZHQHKMXB1s+FFoB0u8aAhHQKC27E3Kji51fZQoaAZHQHJBsophF3JoB0vnaAhHQKC29i/fwZx1fZQoaAZHQHB4k47zTWpoB0vSaAhHQKC2+egctGx1fZQoaAZHQHKuWtITXatoB0veaAhHQKC3uC5Etul1fZQoaAZHQHCDWOU+s5poB0ulaAhHQKC3w5MDfWN1fZQoaAZHQHOXkJv5xipoB0u1aAhHQKC310bLlmx1fZQoaAZHQHIJRUNrj5toB0v8aAhHQKC4LcRDkU91fZQoaAZHQHJvKg/TsppoB0vJaAhHQKC4kUh3aBZ1fZQoaAZHQHJmOF10T11oB00PAWgIR0CguKcvmHQAdX2UKGgGR0Bx6nayrxRVaAdL3mgIR0CguMyCvovBdX2UKGgGR0Bv8CYzBRAKaAdLx2gIR0CguNJQLux9dX2UKGgGR0BvLAPAfuCxaAdLzGgIR0CguQrvkRzzdX2UKGgGR0BxA5cZ9/jLaAdLtGgIR0CguRyRKYiQdX2UKGgGR0BxEGyMUAT7aAdLzWgIR0CguS/3vhIfdX2UKGgGR0ByymdOIqLCaAdL0GgIR0CgucXBxgiNdX2UKGgGR0By0VZZB9kSaAdL2GgIR0CgueYUvf0mdX2UKGgGR0Bw9jsY2sJZaAdL6mgIR0Cguhg/1QIldX2UKGgGR0Byfl4KQaJiaAdLumgIR0CgulGO+7DmdX2UKGgGR0BwCtYSxqwhaAdLymgIR0Cguv60x/NJdX2UKGgGR0Bw8LzkIX0oaAdL7WgIR0CguyYtxuKodX2UKGgGR0ByUABkqc3EaAdNCwFoCEdAoLt7CYTkAHV9lChoBkdAcd0IRh+fAmgHS9FoCEdAoLugh0QsgHV9lChoBkdAcXy+BpYcN2gHS61oCEdAoLuyQzUI9nV9lChoBkdAcGXRrrPdEmgHS71oCEdAoLvEvVVghXV9lChoBkdAchedweeWfWgHS8FoCEdAoLvnUYsND3V9lChoBkdAcvfRbKRuCWgHS+JoCEdAoLwISOBDonV9lChoBkdAcI9Ls8gZCWgHTRABaAhHQKC8gQLeANJ1fZQoaAZHQHDQygPEsJ9oB0vPaAhHQKC84dn003x1fZQoaAZHQHBU+oHcDbJoB0u/aAhHQKC9O/mknCx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 340, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}