--- library_name: transformers license: mit base_model: fahadqazi/Sindhi-TTS tags: - generated_from_trainer model-index: - name: Sindhi-TTS results: [] --- # Sindhi-TTS This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4602 - eval_runtime: 47.8291 - eval_samples_per_second: 36.421 - eval_steps_per_second: 18.211 - epoch: 13.2653 - step: 6500 ## How to use ``` from transformers import SpeechT5ForTextToSpeech, SpeechT5ForSpeechToText from transformers import SpeechT5Processor from transformers import AutoTokenizer from transformers import SpeechT5HifiGan import torch from IPython.display import Audio as IPythonAudio device = "cuda" if torch.cuda.is_available() else "cpu" # imporing speech processor from another repo processor = SpeechT5Processor.from_pretrained("Sana1207/Hindi_SpeechT5_finetuned") # importing tokenizer and assigning it to the speech processor tokenizer = AutoTokenizer.from_pretrained("fahadqazi/Sindhi-TTS") processor.tokenizer = tokenizer # importing the model model = SpeechT5ForTextToSpeech.from_pretrained("fahadqazi/Sindhi-TTS") # importing the vocoder from microsoft's repository vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) # loading random vocodings (the voice) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = embeddings_dataset[7306]["xvector"] speaker_embeddings = torch.tensor(speaker_embeddings).to(device).unsqueeze(0) # Generating Speech text = "ڪهڙا حال آهن" inputs = processor(text=text, return_tensors="pt").to(device) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) IPythonAudio(speech.cpu().numpy(), rate=16000, autoplay=True) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 10000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3