--- library_name: transformers license: mit base_model: Sana1207/Hindi_SpeechT5_finetuned tags: - generated_from_trainer model-index: - name: Sindhi-TTS results: [] --- # Sindhi-TTS This model is a fine-tuned version of [Sana1207/Hindi_SpeechT5_finetuned](https://huggingface.co/Sana1207/Hindi_SpeechT5_finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5769 | 0.3992 | 100 | 0.5673 | | 0.5602 | 0.7984 | 200 | 0.5603 | | 0.553 | 1.1986 | 300 | 0.5489 | | 0.5413 | 1.5978 | 400 | 0.5433 | | 0.5361 | 1.9970 | 500 | 0.5336 | | 0.5391 | 2.3972 | 600 | 0.5414 | | 0.524 | 2.7964 | 700 | 0.5290 | | 0.5253 | 3.1966 | 800 | 0.5317 | | 0.5272 | 3.5958 | 900 | 0.5234 | | 0.5258 | 3.9950 | 1000 | 0.5280 | | 0.5173 | 4.3952 | 1100 | 0.5180 | | 0.518 | 4.7944 | 1200 | 0.5207 | | 0.5119 | 5.1946 | 1300 | 0.5157 | | 0.5114 | 5.5938 | 1400 | 0.5169 | | 0.5138 | 5.9930 | 1500 | 0.5140 | | 0.5048 | 6.3932 | 1600 | 0.5122 | | 0.5059 | 6.7924 | 1700 | 0.5173 | | 0.4991 | 7.1926 | 1800 | 0.5057 | | 0.5038 | 7.5918 | 1900 | 0.5053 | | 0.4994 | 7.9910 | 2000 | 0.5071 | | 0.4989 | 8.3912 | 2100 | 0.5080 | | 0.4951 | 8.7904 | 2200 | 0.5099 | | 0.4941 | 9.1906 | 2300 | 0.5022 | | 0.493 | 9.5898 | 2400 | 0.5039 | | 0.4915 | 9.9890 | 2500 | 0.5014 | | 0.4911 | 10.3892 | 2600 | 0.5066 | | 0.4861 | 10.7884 | 2700 | 0.4987 | | 0.4875 | 11.1886 | 2800 | 0.5042 | | 0.4892 | 11.5878 | 2900 | 0.4980 | | 0.4909 | 11.9870 | 3000 | 0.5007 | | 0.4886 | 12.3872 | 3100 | 0.4980 | | 0.4857 | 12.7864 | 3200 | 0.4952 | | 0.4868 | 13.1866 | 3300 | 0.4972 | | 0.482 | 13.5858 | 3400 | 0.4957 | | 0.479 | 13.9850 | 3500 | 0.5029 | | 0.48 | 14.3852 | 3600 | 0.4954 | | 0.4819 | 14.7844 | 3700 | 0.4982 | | 0.4791 | 15.1846 | 3800 | 0.4936 | | 0.4776 | 15.5838 | 3900 | 0.4947 | | 0.4736 | 15.9830 | 4000 | 0.4930 | | 0.4744 | 16.3832 | 4100 | 0.4937 | | 0.4735 | 16.7824 | 4200 | 0.4895 | | 0.4789 | 17.1826 | 4300 | 0.4936 | | 0.4729 | 17.5818 | 4400 | 0.4920 | | 0.4742 | 17.9810 | 4500 | 0.4915 | | 0.4721 | 18.3812 | 4600 | 0.4887 | | 0.4733 | 18.7804 | 4700 | 0.4933 | | 0.4849 | 19.1806 | 4800 | 0.4879 | | 0.4692 | 19.5798 | 4900 | 0.4889 | | 0.4747 | 19.9790 | 5000 | 0.4887 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3