File size: 1,972 Bytes
3e5c93e
 
 
6c26f20
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
6c26f20
c8b48b7
d07e55d
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8b48b7
0a57e11
267862e
3e5c93e
2c107e8
0a57e11
3e5c93e
 
c8b48b7
d07e55d
3e5c93e
 
d07e55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e5c93e
 
 
6c26f20
3e5c93e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: fahadqazi/Sindhi-TTS
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Sindhi-TTS

This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4421

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4462        | 0.2042 | 100  | 0.4506          |
| 0.4456        | 0.4084 | 200  | 0.4482          |
| 0.4424        | 0.6126 | 300  | 0.4468          |
| 0.4501        | 0.8167 | 400  | 0.4429          |
| 0.4393        | 1.0219 | 500  | 0.4435          |
| 0.4518        | 1.2261 | 600  | 0.4439          |
| 0.4459        | 1.4303 | 700  | 0.4423          |
| 0.4404        | 1.6345 | 800  | 0.4430          |
| 0.4414        | 1.8387 | 900  | 0.4423          |
| 0.4396        | 2.0439 | 1000 | 0.4421          |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3