File size: 1,972 Bytes
3e5c93e 6c26f20 3e5c93e 6c26f20 a642b9a e03d632 3e5c93e e03d632 0a57e11 267862e 3e5c93e 2c107e8 0a57e11 3e5c93e a642b9a 3e5c93e f1ededf e03d632 f1ededf 3e5c93e 6c26f20 3e5c93e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: mit
base_model: fahadqazi/Sindhi-TTS
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sindhi-TTS
This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6189 | 0.2298 | 100 | 0.5837 |
| 0.5426 | 0.4595 | 200 | 0.5275 |
| 0.5237 | 0.6893 | 300 | 0.5106 |
| 0.5118 | 0.9190 | 400 | 0.5018 |
| 0.5032 | 1.1488 | 500 | 0.4960 |
| 0.5044 | 1.3785 | 600 | 0.4939 |
| 0.5042 | 1.6083 | 700 | 0.4905 |
| 0.4985 | 1.8380 | 800 | 0.4895 |
| 0.4938 | 2.0678 | 900 | 0.4871 |
| 0.496 | 2.2975 | 1000 | 0.4864 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|