File size: 1,972 Bytes
3e5c93e
 
 
6c26f20
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
6c26f20
a642b9a
e03d632
3e5c93e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e03d632
0a57e11
267862e
3e5c93e
2c107e8
0a57e11
3e5c93e
 
 
a642b9a
3e5c93e
 
f1ededf
 
e03d632
 
 
 
 
 
 
 
 
 
 
 
f1ededf
 
3e5c93e
 
 
6c26f20
3e5c93e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: fahadqazi/Sindhi-TTS
tags:
- generated_from_trainer
model-index:
- name: Sindhi-TTS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Sindhi-TTS

This model is a fine-tuned version of [fahadqazi/Sindhi-TTS](https://huggingface.co/fahadqazi/Sindhi-TTS) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4864

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6189        | 0.2298 | 100  | 0.5837          |
| 0.5426        | 0.4595 | 200  | 0.5275          |
| 0.5237        | 0.6893 | 300  | 0.5106          |
| 0.5118        | 0.9190 | 400  | 0.5018          |
| 0.5032        | 1.1488 | 500  | 0.4960          |
| 0.5044        | 1.3785 | 600  | 0.4939          |
| 0.5042        | 1.6083 | 700  | 0.4905          |
| 0.4985        | 1.8380 | 800  | 0.4895          |
| 0.4938        | 2.0678 | 900  | 0.4871          |
| 0.496         | 2.2975 | 1000 | 0.4864          |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3