--- library_name: fairseq task: audio-to-audio tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation datasets: - mtedx - covost2 - europarl_st - voxpopuli widget: - example_title: Common Voice sample 1 src: https://huggingface.co/facebook/xm_transformer_600m-es_en-multi_domain/resolve/main/common_voice_es_19966634.flac --- ## xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022 Speech-to-speech translation model from fairseq S2UT ([paper](https://arxiv.org/abs/2204.02967)/[code](https://github.com/facebookresearch/fairseq/blob/main/examples/speech_to_speech/docs/enhanced_direct_s2st_discrete_units.md)): - Spanish-English - Trained on mTEDx, CoVoST 2, Europarl-ST and VoxPopuli - Speech synthesis with [facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur](https://huggingface.co/facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur) ## Usage ```python import json import os from pathlib import Path import IPython.display as ipd from fairseq import hub_utils from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.speech_to_text.hub_interface import S2THubInterface from fairseq.models.text_to_speech import CodeHiFiGANVocoder from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface from huggingface_hub import snapshot_download import torchaudio cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE") models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/xm_transformer_s2ut_800m-es-en-st-asr-bt_h1_2022", arg_overrides={"config_yaml": "config.yaml", "task": "speech_to_text"}, cache_dir=cache_dir, ) model = models[0].cpu() cfg["task"].cpu = True generator = task.build_generator([model], cfg) # requires 16000Hz mono channel audio audio, _ = torchaudio.load("/path/to/an/audio/file") sample = S2THubInterface.get_model_input(task, audio) unit = S2THubInterface.get_prediction(task, model, generator, sample) # speech synthesis library_name = "fairseq" cache_dir = ( cache_dir or (Path.home() / ".cache" / library_name).as_posix() ) cache_dir = snapshot_download( f"facebook/unit_hifigan_mhubert_vp_en_es_fr_it3_400k_layer11_km1000_lj_dur", cache_dir=cache_dir, library_name=library_name ) x = hub_utils.from_pretrained( cache_dir, "model.pt", ".", archive_map=CodeHiFiGANVocoder.hub_models(), config_yaml="config.json", fp16=False, is_vocoder=True, ) with open(f"{x['args']['data']}/config.json") as f: vocoder_cfg = json.load(f) assert ( len(x["args"]["model_path"]) == 1 ), "Too many vocoder models in the input" vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg) tts_model = VocoderHubInterface(vocoder_cfg, vocoder) tts_sample = tts_model.get_model_input(unit) wav, sr = tts_model.get_prediction(tts_sample) ipd.Audio(wav, rate=sr) ``` ## Citation ```bibtex @misc{https://doi.org/10.48550/arxiv.2204.02967, doi = {10.48550/ARXIV.2204.02967}, url = {https://arxiv.org/abs/2204.02967}, author = {Popuri, Sravya and Chen, Peng-Jen and Wang, Changhan and Pino, Juan and Adi, Yossi and Gu, Jiatao and Hsu, Wei-Ning and Lee, Ann}, keywords = {Computation and Language (cs.CL), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering}, title = {Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmentation}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```