patrickvonplaten commited on
Commit
5af67a2
·
1 Parent(s): 7f47de4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - librispeech_asr
5
+ tags:
6
+ - speech
7
+ - audio
8
+ - automatic-speech-recognition
9
+ - hf-asr-leaderboard
10
+ license: apache-2.0
11
+ model-index:
12
+ - name: wav2vec2-conformer-rel-pos-large-960h-ft
13
+ results:
14
+ - task:
15
+ name: Automatic Speech Recognition
16
+ type: automatic-speech-recognition
17
+ dataset:
18
+ name: Librispeech (clean)
19
+ type: librispeech_asr
20
+ args: en
21
+ metrics:
22
+ - name: Test WER
23
+ type: wer
24
+ value: 1.85
25
+ ---
26
+
27
+ # Wav2Vec2-Conformer-Large-960h with Relative Position Embeddings
28
+
29
+ [Facebook's Wav2Vec2 Conformer (TODO-add link)]()
30
+
31
+ Wav2Vec2 Conformer with relative position embeddings, pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
32
+
33
+ [Paper (TODO)](https://arxiv.org/abs/2006.11477)
34
+
35
+ Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli
36
+
37
+ **Abstract**
38
+
39
+ We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.
40
+
41
+ The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.
42
+
43
+
44
+ # Usage
45
+
46
+ To transcribe audio files the model can be used as a standalone acoustic model as follows:
47
+
48
+ ```python
49
+ from transformers import Wav2Vec2Processor, Wav2Vec2ConformerForCTC
50
+ from datasets import load_dataset
51
+ import torch
52
+
53
+ # load model and processor
54
+ processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
55
+ model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
56
+
57
+ # load dummy dataset and read soundfiles
58
+ ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
59
+
60
+ # tokenize
61
+ input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values
62
+
63
+ # retrieve logits
64
+ logits = model(input_values).logits
65
+
66
+ # take argmax and decode
67
+ predicted_ids = torch.argmax(logits, dim=-1)
68
+ transcription = processor.batch_decode(predicted_ids)
69
+ ```
70
+
71
+ ## Evaluation
72
+
73
+ This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60-self** on LibriSpeech's "clean" and "other" test data.
74
+
75
+ ```python
76
+ from datasets import load_dataset
77
+ from transformers import Wav2Vec2ConformerForCTC, Wav2Vec2Processor
78
+ import torch
79
+ from jiwer import wer
80
+
81
+
82
+ librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
83
+
84
+ model = Wav2Vec2ConformerForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to("cuda")
85
+ processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
86
+
87
+ def map_to_pred(batch):
88
+ inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
89
+ input_values = inputs.input_values.to("cuda")
90
+ attention_mask = inputs.attention_mask.to("cuda")
91
+
92
+ with torch.no_grad():
93
+ logits = model(input_values, attention_mask=attention_mask).logits
94
+
95
+ predicted_ids = torch.argmax(logits, dim=-1)
96
+ transcription = processor.batch_decode(predicted_ids)
97
+ batch["transcription"] = transcription
98
+ return batch
99
+
100
+ result = librispeech_eval.map(map_to_pred, remove_columns=["audio"])
101
+
102
+ print("WER:", wer(result["text"], result["transcription"]))
103
+ ```
104
+
105
+ *Result (WER)*:
106
+
107
+ | "clean" | "other" |
108
+ |---|---|
109
+ | 1.85 | 3.82 |