sanchit-gandhi
commited on
Commit
·
ed727c2
1
Parent(s):
22aad52
Update README.md
Browse files
README.md
CHANGED
@@ -91,15 +91,23 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
91 |
```
|
92 |
|
93 |
## Evaluation
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
```python
|
|
|
98 |
from datasets import load_dataset
|
99 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
100 |
-
import
|
101 |
-
from jiwer import wer
|
102 |
-
|
103 |
|
104 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
105 |
|
@@ -107,18 +115,21 @@ model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
|
107 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
108 |
|
109 |
def map_to_pred(batch):
|
110 |
-
|
|
|
|
|
111 |
with torch.no_grad():
|
112 |
logits = model(input_values.to("cuda")).logits
|
113 |
|
114 |
predicted_ids = torch.argmax(logits, dim=-1)
|
115 |
transcription = processor.batch_decode(predicted_ids)
|
116 |
-
batch["transcription"] = transcription
|
117 |
return batch
|
118 |
|
119 |
-
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=
|
|
|
120 |
|
121 |
-
print("WER:", wer(result["text"], result["transcription"]))
|
122 |
```
|
123 |
|
124 |
*Result (WER)*:
|
|
|
91 |
```
|
92 |
|
93 |
## Evaluation
|
94 |
+
|
95 |
+
First, ensure the required Python packages are installed. We'll require `transformers` for running the Wav2Vec2 model,
|
96 |
+
`datasets` for loading the LibriSpeech dataset, and `evaluate` plus `jiwer` for computing the word-error rate (WER):
|
97 |
+
|
98 |
+
```
|
99 |
+
pip install --upgrade pip
|
100 |
+
pip install --upgrade transformers datasets evaluate jiwer
|
101 |
+
```
|
102 |
+
|
103 |
+
The following code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data.
|
104 |
+
The batch size can be set according to your device, and is set to `8` by default:
|
105 |
+
|
106 |
```python
|
107 |
+
import torch
|
108 |
from datasets import load_dataset
|
109 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
110 |
+
from evaluate import load
|
|
|
|
|
111 |
|
112 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
113 |
|
|
|
115 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
116 |
|
117 |
def map_to_pred(batch):
|
118 |
+
audios = [audio["array"] for audio in batch["audio"]]
|
119 |
+
sampling_rate = batch["audio"][0]["sampling_rate"]
|
120 |
+
input_values = processor(audios, sampling_rate=sampling_rate, return_tensors="pt", padding="longest").input_values
|
121 |
with torch.no_grad():
|
122 |
logits = model(input_values.to("cuda")).logits
|
123 |
|
124 |
predicted_ids = torch.argmax(logits, dim=-1)
|
125 |
transcription = processor.batch_decode(predicted_ids)
|
126 |
+
batch["transcription"] = [t for t in transcription]
|
127 |
return batch
|
128 |
|
129 |
+
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["audio"])
|
130 |
+
wer = load("wer")
|
131 |
|
132 |
+
print("WER:", wer.compute(references=result["text"], predictions=result["transcription"]))
|
133 |
```
|
134 |
|
135 |
*Result (WER)*:
|