patrickvonplaten
commited on
Commit
•
6b154c5
1
Parent(s):
f1f1647
Update README.md
Browse files
README.md
CHANGED
@@ -36,13 +36,13 @@ The original model can be found under https://github.com/pytorch/fairseq/tree/ma
|
|
36 |
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
37 |
|
38 |
```python
|
39 |
-
from transformers import
|
40 |
from datasets import load_dataset
|
41 |
import soundfile as sf
|
42 |
import torch
|
43 |
|
44 |
# load model and tokenizer
|
45 |
-
|
46 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
47 |
|
48 |
# define function to read in sound file
|
@@ -56,14 +56,14 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
56 |
ds = ds.map(map_to_array)
|
57 |
|
58 |
# tokenize
|
59 |
-
input_values =
|
60 |
|
61 |
# retrieve logits
|
62 |
logits = model(input_values).logits
|
63 |
|
64 |
# take argmax and decode
|
65 |
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
-
transcription =
|
67 |
```
|
68 |
|
69 |
## Evaluation
|
@@ -72,7 +72,7 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
72 |
|
73 |
```python
|
74 |
from datasets import load_dataset
|
75 |
-
from transformers import Wav2Vec2ForCTC,
|
76 |
import soundfile as sf
|
77 |
import torch
|
78 |
from jiwer import wer
|
@@ -81,7 +81,7 @@ from jiwer import wer
|
|
81 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
82 |
|
83 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
84 |
-
|
85 |
|
86 |
def map_to_array(batch):
|
87 |
speech, _ = sf.read(batch["file"])
|
@@ -91,12 +91,12 @@ def map_to_array(batch):
|
|
91 |
librispeech_eval = librispeech_eval.map(map_to_array)
|
92 |
|
93 |
def map_to_pred(batch):
|
94 |
-
input_values =
|
95 |
with torch.no_grad():
|
96 |
logits = model(input_values.to("cuda")).logits
|
97 |
|
98 |
predicted_ids = torch.argmax(logits, dim=-1)
|
99 |
-
transcription =
|
100 |
batch["transcription"] = transcription
|
101 |
return batch
|
102 |
|
|
|
36 |
To transcribe audio files the model can be used as a standalone acoustic model as follows:
|
37 |
|
38 |
```python
|
39 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
40 |
from datasets import load_dataset
|
41 |
import soundfile as sf
|
42 |
import torch
|
43 |
|
44 |
# load model and tokenizer
|
45 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
46 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
47 |
|
48 |
# define function to read in sound file
|
|
|
56 |
ds = ds.map(map_to_array)
|
57 |
|
58 |
# tokenize
|
59 |
+
input_values = processor(ds["speech"][:2], return_tensors="pt", padding="longest").input_values # Batch size 1
|
60 |
|
61 |
# retrieve logits
|
62 |
logits = model(input_values).logits
|
63 |
|
64 |
# take argmax and decode
|
65 |
predicted_ids = torch.argmax(logits, dim=-1)
|
66 |
+
transcription = processor.batch_decode(predicted_ids)
|
67 |
```
|
68 |
|
69 |
## Evaluation
|
|
|
72 |
|
73 |
```python
|
74 |
from datasets import load_dataset
|
75 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
76 |
import soundfile as sf
|
77 |
import torch
|
78 |
from jiwer import wer
|
|
|
81 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
82 |
|
83 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
|
85 |
|
86 |
def map_to_array(batch):
|
87 |
speech, _ = sf.read(batch["file"])
|
|
|
91 |
librispeech_eval = librispeech_eval.map(map_to_array)
|
92 |
|
93 |
def map_to_pred(batch):
|
94 |
+
input_values = processor(batch["speech"], return_tensors="pt", padding="longest").input_values
|
95 |
with torch.no_grad():
|
96 |
logits = model(input_values.to("cuda")).logits
|
97 |
|
98 |
predicted_ids = torch.argmax(logits, dim=-1)
|
99 |
+
transcription = processor.batch_decode(predicted_ids)
|
100 |
batch["transcription"] = transcription
|
101 |
return batch
|
102 |
|