File size: 15,788 Bytes
a01fb33
df70630
8c7ef32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7439df0
 
 
 
8c7ef32
 
 
 
6a705c7
38c8939
6a705c7
 
 
a9a2b5d
 
3cda576
 
 
 
 
 
 
 
 
a01fb33
c2a7291
 
 
d217a33
c2a7291
 
 
 
 
 
 
 
174dce9
 
 
 
 
d217a33
c2a7291
 
 
 
 
d217a33
c2a7291
2ae1d17
c2a7291
 
 
 
4c99fb7
 
 
c2a7291
 
 
 
 
 
 
fa1ee6c
c2a7291
 
 
fa1ee6c
c2a7291
d217a33
 
 
 
 
 
 
 
 
 
 
 
 
 
1f81c95
d217a33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9c8e84
d217a33
 
 
 
 
 
 
 
 
f9c8e84
d217a33
 
 
 
 
 
 
c2a7291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1ee6c
c2a7291
 
 
 
 
 
 
 
 
 
1d13e1f
5f8cc79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
license: cc-by-nc-4.0
language:
- af
- am
- ar
- as
- az
- be
- bn
- bs
- bg
- ca
- cs
- zh
- cy
- da
- de
- el
- en
- et
- fi
- fr
- or
- om
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- ig
- id
- is
- it
- jv
- ja
- kn
- ka
- kk
- mn
- km
- ky
- ko
- lo
- ln
- lt
- lb
- lg
- lv
- ml
- mr
- mk
- mt
- mi
- my
- nl
- nb
- ne
- ny
- oc
- pa
- ps
- fa
- pl
- pt
- ro
- ru
- sk
- sl
- sn
- sd
- so
- es
- sr
- sv
- sw
- ta
- te
- tg
- tl
- th
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- ms
- zu
- ary
- arz
- yue
- kea
metrics:
- bleu
- wer
- chrf
inference: False
pipeline_tag: automatic-speech-recognition
tags:
  - audio-to-audio
  - text-to-speech
  - seamless_communication  
library_name: transformers
widget:
  - src: /static-proxy?url=https%3A%2F%2Fcdn-media.huggingface.co%2Fspeech_samples%2Fsample1.flac%3C%2Fspan%3E
    example_title: Librispeech sample 1
    output:
      text: going along slushy country roads and speaking to damp audiences in draughty schoolrooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to us immediately afterwards
  - src: /static-proxy?url=https%3A%2F%2Fcdn-media.huggingface.co%2Fspeech_samples%2Fsample2.flac%3C%2Fspan%3E
    example_title: Librispeech sample 2
    output:
      text: before he had time to answer a much-encumbered vera burst into the room with the question i say can i leave these here these were a small black pig and a lusty specimen of black-red game-cock
---

# SeamlessM4T v2

**SeamlessM4T** is our foundational all-in-one **M**assively **M**ultilingual and **M**ultimodal **M**achine **T**ranslation model delivering high-quality translation for speech and text in nearly 100 languages.

SeamlessM4T models support the tasks of:
- Speech-to-speech translation (S2ST)
- Speech-to-text translation (S2TT)
- Text-to-speech translation (T2ST)
- Text-to-text translation (T2TT)
- Automatic speech recognition (ASR).

SeamlessM4T models support:
- 🎤 101 languages for speech input.
- 💬 96 Languages for text input/output.
- 🔊 35 languages for speech output.
  
🌟 We are releasing SeamlessM4T v2, an updated version with our novel *UnitY2* architecture. 
This new model improves over SeamlessM4T v1 in quality as well as inference speed in speech generation tasks.

The v2 version of SeamlessM4T is a multitask adaptation of our novel *UnitY2* architecture. 
*Unity2* with its hierarchical character-to-unit upsampling and non-autoregressive text-to-unit decoding considerably improves over SeamlessM4T v1 in quality and inference speed.

**SeamlessM4T v2 is also supported by 🤗 Transformers, more on it [in the dedicated section below](#transformers-usage).**

![SeamlessM4T architectures](seamlessm4t_arch.svg)

## SeamlessM4T  models
| Model Name         | #params | checkpoint                                                                              | metrics                                                                              |
| ------------------ | ------- | --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| [SeamlessM4T-Large v2](https://huggingface.co/facebook/seamless-m4t-v2-large)  | 2.3B    | [checkpoint](https://huggingface.co/facebook/seamless-m4t-v2-large/blob/main/seamlessM4T_v2_large.pt)   | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_large_v2.zip)  |
| [SeamlessM4T-Large (v1)](https://huggingface.co/facebook/seamless-m4t-large) | 2.3B    | [checkpoint](https://huggingface.co/facebook/seamless-m4t-large/blob/main/multitask_unity_large.pt)   | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_large.zip)  |
| [SeamlessM4T-Medium (v1)](https://huggingface.co/facebook/seamless-m4t-medium) | 1.2B    | [checkpoint](https://huggingface.co/facebook/seamless-m4t-medium/blob/main/multitask_unity_medium.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_medium.zip) |

We provide the extensive evaluation results of seamlessM4T-Large and SeamlessM4T-Medium reported in the paper (as averages) in the `metrics` files above.

The evaluation data ids for FLEURS, CoVoST2 and CVSS-C can be found [here](https://dl.fbaipublicfiles.com/seamless/metrics/evaluation_data_ids.zip)


## Evaluating SeamlessM4T models
To reproduce our results or to evaluate using the same metrics over your own test sets, please check out the [Evaluation README here](https://github.com/facebookresearch/seamless_communication/tree/main/src/seamless_communication/cli/m4t/evaluate).


## Finetuning SeamlessM4T models
Please check out the [Finetuning README here](https://github.com/facebookresearch/seamless_communication/tree/main/src/seamless_communication/cli/m4t/finetune).

## Transformers usage

SeamlessM4T is available in the 🤗 Transformers library, requiring minimal dependencies. Steps to get started:

1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main and [sentencepiece](https://github.com/google/sentencepiece):

```
pip install git+https://github.com/huggingface/transformers.git sentencepiece
```

2. Run the following Python code to generate speech samples. Here the target language is Russian:

```py
from transformers import AutoProcessor, SeamlessM4Tv2Model
import torchaudio

processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")

# from text
text_inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")
audio_array_from_text = model.generate(**text_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze()

# from audio
audio, orig_freq =  torchaudio.load("https://www2.cs.uic.edu/~i101/SoundFiles/preamble10.wav")
audio =  torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16_000) # must be a 16 kHz waveform array
audio_inputs = processor(audios=audio, return_tensors="pt")
audio_array_from_audio = model.generate(**audio_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze()
```

3. Listen to the audio samples either in an ipynb notebook:

```py
from IPython.display import Audio

sample_rate = model.config.sampling_rate
Audio(audio_array_from_text, rate=sample_rate)
# Audio(audio_array_from_audio, rate=sample_rate)
```

Or save them as a `.wav` file using a third-party library, e.g. `scipy`:

```py
import scipy

sample_rate = model.config.sampling_rate
scipy.io.wavfile.write("out_from_text.wav", rate=sample_rate, data=audio_array_from_text)
# scipy.io.wavfile.write("out_from_audio.wav", rate=sample_rate, data=audio_array_from_audio)
```
For more details on using the SeamlessM4T model for inference using the 🤗 Transformers library, refer to the 
**[SeamlessM4T v2 docs](https://huggingface.co/docs/transformers/main/en/model_doc/seamless_m4t_v2)** or to this **hands-on [Google Colab](https://colab.research.google.com/github/ylacombe/scripts_and_notebooks/blob/main/v2_seamless_m4t_hugging_face.ipynb).**


## Supported Languages:

Listed below, are the languages supported by SeamlessM4T-large (v1/v2).
The `source` column specifies whether a language is supported as source speech (`Sp`) and/or source text (`Tx`).
The `target` column specifies whether a language is supported as target speech (`Sp`) and/or target text (`Tx`).


| code | language               | script     | Source | Target |
| ---- | ---------------------- | ---------- | ------ | ------ |
| afr  | Afrikaans              | Latn       | Sp, Tx | Tx     |
| amh  | Amharic                | Ethi       | Sp, Tx | Tx     |
| arb  | Modern Standard Arabic | Arab       | Sp, Tx | Sp, Tx |
| ary  | Moroccan Arabic        | Arab       | Sp, Tx | Tx     |
| arz  | Egyptian Arabic        | Arab       | Sp, Tx | Tx     |
| asm  | Assamese               | Beng       | Sp, Tx | Tx     |
| ast  | Asturian               | Latn       | Sp     | \--    |
| azj  | North Azerbaijani      | Latn       | Sp, Tx | Tx     |
| bel  | Belarusian             | Cyrl       | Sp, Tx | Tx     |
| ben  | Bengali                | Beng       | Sp, Tx | Sp, Tx |
| bos  | Bosnian                | Latn       | Sp, Tx | Tx     |
| bul  | Bulgarian              | Cyrl       | Sp, Tx | Tx     |
| cat  | Catalan                | Latn       | Sp, Tx | Sp, Tx |
| ceb  | Cebuano                | Latn       | Sp, Tx | Tx     |
| ces  | Czech                  | Latn       | Sp, Tx | Sp, Tx |
| ckb  | Central Kurdish        | Arab       | Sp, Tx | Tx     |
| cmn  | Mandarin Chinese       | Hans       | Sp, Tx | Sp, Tx |
| cmn_Hant  | Mandarin Chinese  | Hant       | Sp, Tx | Sp, Tx |
| cym  | Welsh                  | Latn       | Sp, Tx | Sp, Tx |
| dan  | Danish                 | Latn       | Sp, Tx | Sp, Tx |
| deu  | German                 | Latn       | Sp, Tx | Sp, Tx |
| ell  | Greek                  | Grek       | Sp, Tx | Tx     |
| eng  | English                | Latn       | Sp, Tx | Sp, Tx |
| est  | Estonian               | Latn       | Sp, Tx | Sp, Tx |
| eus  | Basque                 | Latn       | Sp, Tx | Tx     |
| fin  | Finnish                | Latn       | Sp, Tx | Sp, Tx |
| fra  | French                 | Latn       | Sp, Tx | Sp, Tx |
| fuv  | Nigerian Fulfulde      | Latn       | Sp, Tx | Tx     |
| gaz  | West Central Oromo     | Latn       | Sp, Tx | Tx     |
| gle  | Irish                  | Latn       | Sp, Tx | Tx     |
| glg  | Galician               | Latn       | Sp, Tx | Tx     |
| guj  | Gujarati               | Gujr       | Sp, Tx | Tx     |
| heb  | Hebrew                 | Hebr       | Sp, Tx | Tx     |
| hin  | Hindi                  | Deva       | Sp, Tx | Sp, Tx |
| hrv  | Croatian               | Latn       | Sp, Tx | Tx     |
| hun  | Hungarian              | Latn       | Sp, Tx | Tx     |
| hye  | Armenian               | Armn       | Sp, Tx | Tx     |
| ibo  | Igbo                   | Latn       | Sp, Tx | Tx     |
| ind  | Indonesian             | Latn       | Sp, Tx | Sp, Tx |
| isl  | Icelandic              | Latn       | Sp, Tx | Tx     |
| ita  | Italian                | Latn       | Sp, Tx | Sp, Tx |
| jav  | Javanese               | Latn       | Sp, Tx | Tx     |
| jpn  | Japanese               | Jpan       | Sp, Tx | Sp, Tx |
| kam  | Kamba                  | Latn       | Sp     | \--    |
| kan  | Kannada                | Knda       | Sp, Tx | Tx     |
| kat  | Georgian               | Geor       | Sp, Tx | Tx     |
| kaz  | Kazakh                 | Cyrl       | Sp, Tx | Tx     |
| kea  | Kabuverdianu           | Latn       | Sp     | \--    |
| khk  | Halh Mongolian         | Cyrl       | Sp, Tx | Tx     |
| khm  | Khmer                  | Khmr       | Sp, Tx | Tx     |
| kir  | Kyrgyz                 | Cyrl       | Sp, Tx | Tx     |
| kor  | Korean                 | Kore       | Sp, Tx | Sp, Tx |
| lao  | Lao                    | Laoo       | Sp, Tx | Tx     |
| lit  | Lithuanian             | Latn       | Sp, Tx | Tx     |
| ltz  | Luxembourgish          | Latn       | Sp     | \--    |
| lug  | Ganda                  | Latn       | Sp, Tx | Tx     |
| luo  | Luo                    | Latn       | Sp, Tx | Tx     |
| lvs  | Standard Latvian       | Latn       | Sp, Tx | Tx     |
| mai  | Maithili               | Deva       | Sp, Tx | Tx     |
| mal  | Malayalam              | Mlym       | Sp, Tx | Tx     |
| mar  | Marathi                | Deva       | Sp, Tx | Tx     |
| mkd  | Macedonian             | Cyrl       | Sp, Tx | Tx     |
| mlt  | Maltese                | Latn       | Sp, Tx | Sp, Tx |
| mni  | Meitei                 | Beng       | Sp, Tx | Tx     |
| mya  | Burmese                | Mymr       | Sp, Tx | Tx     |
| nld  | Dutch                  | Latn       | Sp, Tx | Sp, Tx |
| nno  | Norwegian Nynorsk      | Latn       | Sp, Tx | Tx     |
| nob  | Norwegian Bokmål       | Latn       | Sp, Tx | Tx     |
| npi  | Nepali                 | Deva       | Sp, Tx | Tx     |
| nya  | Nyanja                 | Latn       | Sp, Tx | Tx     |
| oci  | Occitan                | Latn       | Sp     | \--    |
| ory  | Odia                   | Orya       | Sp, Tx | Tx     |
| pan  | Punjabi                | Guru       | Sp, Tx | Tx     |
| pbt  | Southern Pashto        | Arab       | Sp, Tx | Tx     |
| pes  | Western Persian        | Arab       | Sp, Tx | Sp, Tx |
| pol  | Polish                 | Latn       | Sp, Tx | Sp, Tx |
| por  | Portuguese             | Latn       | Sp, Tx | Sp, Tx |
| ron  | Romanian               | Latn       | Sp, Tx | Sp, Tx |
| rus  | Russian                | Cyrl       | Sp, Tx | Sp, Tx |
| slk  | Slovak                 | Latn       | Sp, Tx | Sp, Tx |
| slv  | Slovenian              | Latn       | Sp, Tx | Tx     |
| sna  | Shona                  | Latn       | Sp, Tx | Tx     |
| snd  | Sindhi                 | Arab       | Sp, Tx | Tx     |
| som  | Somali                 | Latn       | Sp, Tx | Tx     |
| spa  | Spanish                | Latn       | Sp, Tx | Sp, Tx |
| srp  | Serbian                | Cyrl       | Sp, Tx | Tx     |
| swe  | Swedish                | Latn       | Sp, Tx | Sp, Tx |
| swh  | Swahili                | Latn       | Sp, Tx | Sp, Tx |
| tam  | Tamil                  | Taml       | Sp, Tx | Tx     |
| tel  | Telugu                 | Telu       | Sp, Tx | Sp, Tx |
| tgk  | Tajik                  | Cyrl       | Sp, Tx | Tx     |
| tgl  | Tagalog                | Latn       | Sp, Tx | Sp, Tx |
| tha  | Thai                   | Thai       | Sp, Tx | Sp, Tx |
| tur  | Turkish                | Latn       | Sp, Tx | Sp, Tx |
| ukr  | Ukrainian              | Cyrl       | Sp, Tx | Sp, Tx |
| urd  | Urdu                   | Arab       | Sp, Tx | Sp, Tx |
| uzn  | Northern Uzbek         | Latn       | Sp, Tx | Sp, Tx |
| vie  | Vietnamese             | Latn       | Sp, Tx | Sp, Tx |
| xho  | Xhosa                  | Latn       | Sp     | \--    |
| yor  | Yoruba                 | Latn       | Sp, Tx | Tx     |
| yue  | Cantonese              | Hant       | Sp, Tx | Tx     |
| zlm  | Colloquial Malay       | Latn       | Sp     | \--    |
| zsm  | Standard Malay         | Latn       | Tx     | Tx     |
| zul  | Zulu                   | Latn       | Sp, Tx | Tx     |


Note that seamlessM4T-medium supports 200 languages in the text modality, and is based on NLLB-200 (see full list in [asset card](https://github.com/facebookresearch/seamless_communication/blob/main/src/seamless_communication/cards/unity_nllb-200.yaml))

## Citation
For SeamlessM4T v2, please cite :
```bibtex
@inproceedings{seamless2023,
   title="Seamless: Multilingual Expressive and Streaming Speech Translation",
   author="{Seamless Communication}, Lo{\"i}c Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-juss{\`a}, Maha Elbayad, Hongyu Gong, Francisco Guzm{\'a}n, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson",
  journal={ArXiv},
  year={2023}
}
```
[//]: # "https://arxiv.org/abs/2312.05187"