File size: 15,788 Bytes
a01fb33 df70630 8c7ef32 7439df0 8c7ef32 6a705c7 38c8939 6a705c7 a9a2b5d 3cda576 a01fb33 c2a7291 d217a33 c2a7291 174dce9 d217a33 c2a7291 d217a33 c2a7291 2ae1d17 c2a7291 4c99fb7 c2a7291 fa1ee6c c2a7291 fa1ee6c c2a7291 d217a33 1f81c95 d217a33 f9c8e84 d217a33 f9c8e84 d217a33 c2a7291 fa1ee6c c2a7291 1d13e1f 5f8cc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
---
license: cc-by-nc-4.0
language:
- af
- am
- ar
- as
- az
- be
- bn
- bs
- bg
- ca
- cs
- zh
- cy
- da
- de
- el
- en
- et
- fi
- fr
- or
- om
- ga
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- ig
- id
- is
- it
- jv
- ja
- kn
- ka
- kk
- mn
- km
- ky
- ko
- lo
- ln
- lt
- lb
- lg
- lv
- ml
- mr
- mk
- mt
- mi
- my
- nl
- nb
- ne
- ny
- oc
- pa
- ps
- fa
- pl
- pt
- ro
- ru
- sk
- sl
- sn
- sd
- so
- es
- sr
- sv
- sw
- ta
- te
- tg
- tl
- th
- tr
- uk
- ur
- uz
- vi
- wo
- xh
- yo
- ms
- zu
- ary
- arz
- yue
- kea
metrics:
- bleu
- wer
- chrf
inference: False
pipeline_tag: automatic-speech-recognition
tags:
- audio-to-audio
- text-to-speech
- seamless_communication
library_name: transformers
widget:
- src: /static-proxy?url=https%3A%2F%2Fcdn-media.huggingface.co%2Fspeech_samples%2Fsample1.flac%3C%2Fspan%3E
example_title: Librispeech sample 1
output:
text: going along slushy country roads and speaking to damp audiences in draughty schoolrooms day after day for a fortnight he'll have to put in an appearance at some place of worship on sunday morning and he can come to us immediately afterwards
- src: /static-proxy?url=https%3A%2F%2Fcdn-media.huggingface.co%2Fspeech_samples%2Fsample2.flac%3C%2Fspan%3E
example_title: Librispeech sample 2
output:
text: before he had time to answer a much-encumbered vera burst into the room with the question i say can i leave these here these were a small black pig and a lusty specimen of black-red game-cock
---
# SeamlessM4T v2
**SeamlessM4T** is our foundational all-in-one **M**assively **M**ultilingual and **M**ultimodal **M**achine **T**ranslation model delivering high-quality translation for speech and text in nearly 100 languages.
SeamlessM4T models support the tasks of:
- Speech-to-speech translation (S2ST)
- Speech-to-text translation (S2TT)
- Text-to-speech translation (T2ST)
- Text-to-text translation (T2TT)
- Automatic speech recognition (ASR).
SeamlessM4T models support:
- 🎤 101 languages for speech input.
- 💬 96 Languages for text input/output.
- 🔊 35 languages for speech output.
🌟 We are releasing SeamlessM4T v2, an updated version with our novel *UnitY2* architecture.
This new model improves over SeamlessM4T v1 in quality as well as inference speed in speech generation tasks.
The v2 version of SeamlessM4T is a multitask adaptation of our novel *UnitY2* architecture.
*Unity2* with its hierarchical character-to-unit upsampling and non-autoregressive text-to-unit decoding considerably improves over SeamlessM4T v1 in quality and inference speed.
**SeamlessM4T v2 is also supported by 🤗 Transformers, more on it [in the dedicated section below](#transformers-usage).**
![SeamlessM4T architectures](seamlessm4t_arch.svg)
## SeamlessM4T models
| Model Name | #params | checkpoint | metrics |
| ------------------ | ------- | --------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------ |
| [SeamlessM4T-Large v2](https://huggingface.co/facebook/seamless-m4t-v2-large) | 2.3B | [checkpoint](https://huggingface.co/facebook/seamless-m4t-v2-large/blob/main/seamlessM4T_v2_large.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_large_v2.zip) |
| [SeamlessM4T-Large (v1)](https://huggingface.co/facebook/seamless-m4t-large) | 2.3B | [checkpoint](https://huggingface.co/facebook/seamless-m4t-large/blob/main/multitask_unity_large.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_large.zip) |
| [SeamlessM4T-Medium (v1)](https://huggingface.co/facebook/seamless-m4t-medium) | 1.2B | [checkpoint](https://huggingface.co/facebook/seamless-m4t-medium/blob/main/multitask_unity_medium.pt) | [metrics](https://dl.fbaipublicfiles.com/seamless/metrics/seamlessM4T_medium.zip) |
We provide the extensive evaluation results of seamlessM4T-Large and SeamlessM4T-Medium reported in the paper (as averages) in the `metrics` files above.
The evaluation data ids for FLEURS, CoVoST2 and CVSS-C can be found [here](https://dl.fbaipublicfiles.com/seamless/metrics/evaluation_data_ids.zip)
## Evaluating SeamlessM4T models
To reproduce our results or to evaluate using the same metrics over your own test sets, please check out the [Evaluation README here](https://github.com/facebookresearch/seamless_communication/tree/main/src/seamless_communication/cli/m4t/evaluate).
## Finetuning SeamlessM4T models
Please check out the [Finetuning README here](https://github.com/facebookresearch/seamless_communication/tree/main/src/seamless_communication/cli/m4t/finetune).
## Transformers usage
SeamlessM4T is available in the 🤗 Transformers library, requiring minimal dependencies. Steps to get started:
1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main and [sentencepiece](https://github.com/google/sentencepiece):
```
pip install git+https://github.com/huggingface/transformers.git sentencepiece
```
2. Run the following Python code to generate speech samples. Here the target language is Russian:
```py
from transformers import AutoProcessor, SeamlessM4Tv2Model
import torchaudio
processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
# from text
text_inputs = processor(text = "Hello, my dog is cute", src_lang="eng", return_tensors="pt")
audio_array_from_text = model.generate(**text_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze()
# from audio
audio, orig_freq = torchaudio.load("https://www2.cs.uic.edu/~i101/SoundFiles/preamble10.wav")
audio = torchaudio.functional.resample(audio, orig_freq=orig_freq, new_freq=16_000) # must be a 16 kHz waveform array
audio_inputs = processor(audios=audio, return_tensors="pt")
audio_array_from_audio = model.generate(**audio_inputs, tgt_lang="rus")[0].cpu().numpy().squeeze()
```
3. Listen to the audio samples either in an ipynb notebook:
```py
from IPython.display import Audio
sample_rate = model.config.sampling_rate
Audio(audio_array_from_text, rate=sample_rate)
# Audio(audio_array_from_audio, rate=sample_rate)
```
Or save them as a `.wav` file using a third-party library, e.g. `scipy`:
```py
import scipy
sample_rate = model.config.sampling_rate
scipy.io.wavfile.write("out_from_text.wav", rate=sample_rate, data=audio_array_from_text)
# scipy.io.wavfile.write("out_from_audio.wav", rate=sample_rate, data=audio_array_from_audio)
```
For more details on using the SeamlessM4T model for inference using the 🤗 Transformers library, refer to the
**[SeamlessM4T v2 docs](https://huggingface.co/docs/transformers/main/en/model_doc/seamless_m4t_v2)** or to this **hands-on [Google Colab](https://colab.research.google.com/github/ylacombe/scripts_and_notebooks/blob/main/v2_seamless_m4t_hugging_face.ipynb).**
## Supported Languages:
Listed below, are the languages supported by SeamlessM4T-large (v1/v2).
The `source` column specifies whether a language is supported as source speech (`Sp`) and/or source text (`Tx`).
The `target` column specifies whether a language is supported as target speech (`Sp`) and/or target text (`Tx`).
| code | language | script | Source | Target |
| ---- | ---------------------- | ---------- | ------ | ------ |
| afr | Afrikaans | Latn | Sp, Tx | Tx |
| amh | Amharic | Ethi | Sp, Tx | Tx |
| arb | Modern Standard Arabic | Arab | Sp, Tx | Sp, Tx |
| ary | Moroccan Arabic | Arab | Sp, Tx | Tx |
| arz | Egyptian Arabic | Arab | Sp, Tx | Tx |
| asm | Assamese | Beng | Sp, Tx | Tx |
| ast | Asturian | Latn | Sp | \-- |
| azj | North Azerbaijani | Latn | Sp, Tx | Tx |
| bel | Belarusian | Cyrl | Sp, Tx | Tx |
| ben | Bengali | Beng | Sp, Tx | Sp, Tx |
| bos | Bosnian | Latn | Sp, Tx | Tx |
| bul | Bulgarian | Cyrl | Sp, Tx | Tx |
| cat | Catalan | Latn | Sp, Tx | Sp, Tx |
| ceb | Cebuano | Latn | Sp, Tx | Tx |
| ces | Czech | Latn | Sp, Tx | Sp, Tx |
| ckb | Central Kurdish | Arab | Sp, Tx | Tx |
| cmn | Mandarin Chinese | Hans | Sp, Tx | Sp, Tx |
| cmn_Hant | Mandarin Chinese | Hant | Sp, Tx | Sp, Tx |
| cym | Welsh | Latn | Sp, Tx | Sp, Tx |
| dan | Danish | Latn | Sp, Tx | Sp, Tx |
| deu | German | Latn | Sp, Tx | Sp, Tx |
| ell | Greek | Grek | Sp, Tx | Tx |
| eng | English | Latn | Sp, Tx | Sp, Tx |
| est | Estonian | Latn | Sp, Tx | Sp, Tx |
| eus | Basque | Latn | Sp, Tx | Tx |
| fin | Finnish | Latn | Sp, Tx | Sp, Tx |
| fra | French | Latn | Sp, Tx | Sp, Tx |
| fuv | Nigerian Fulfulde | Latn | Sp, Tx | Tx |
| gaz | West Central Oromo | Latn | Sp, Tx | Tx |
| gle | Irish | Latn | Sp, Tx | Tx |
| glg | Galician | Latn | Sp, Tx | Tx |
| guj | Gujarati | Gujr | Sp, Tx | Tx |
| heb | Hebrew | Hebr | Sp, Tx | Tx |
| hin | Hindi | Deva | Sp, Tx | Sp, Tx |
| hrv | Croatian | Latn | Sp, Tx | Tx |
| hun | Hungarian | Latn | Sp, Tx | Tx |
| hye | Armenian | Armn | Sp, Tx | Tx |
| ibo | Igbo | Latn | Sp, Tx | Tx |
| ind | Indonesian | Latn | Sp, Tx | Sp, Tx |
| isl | Icelandic | Latn | Sp, Tx | Tx |
| ita | Italian | Latn | Sp, Tx | Sp, Tx |
| jav | Javanese | Latn | Sp, Tx | Tx |
| jpn | Japanese | Jpan | Sp, Tx | Sp, Tx |
| kam | Kamba | Latn | Sp | \-- |
| kan | Kannada | Knda | Sp, Tx | Tx |
| kat | Georgian | Geor | Sp, Tx | Tx |
| kaz | Kazakh | Cyrl | Sp, Tx | Tx |
| kea | Kabuverdianu | Latn | Sp | \-- |
| khk | Halh Mongolian | Cyrl | Sp, Tx | Tx |
| khm | Khmer | Khmr | Sp, Tx | Tx |
| kir | Kyrgyz | Cyrl | Sp, Tx | Tx |
| kor | Korean | Kore | Sp, Tx | Sp, Tx |
| lao | Lao | Laoo | Sp, Tx | Tx |
| lit | Lithuanian | Latn | Sp, Tx | Tx |
| ltz | Luxembourgish | Latn | Sp | \-- |
| lug | Ganda | Latn | Sp, Tx | Tx |
| luo | Luo | Latn | Sp, Tx | Tx |
| lvs | Standard Latvian | Latn | Sp, Tx | Tx |
| mai | Maithili | Deva | Sp, Tx | Tx |
| mal | Malayalam | Mlym | Sp, Tx | Tx |
| mar | Marathi | Deva | Sp, Tx | Tx |
| mkd | Macedonian | Cyrl | Sp, Tx | Tx |
| mlt | Maltese | Latn | Sp, Tx | Sp, Tx |
| mni | Meitei | Beng | Sp, Tx | Tx |
| mya | Burmese | Mymr | Sp, Tx | Tx |
| nld | Dutch | Latn | Sp, Tx | Sp, Tx |
| nno | Norwegian Nynorsk | Latn | Sp, Tx | Tx |
| nob | Norwegian Bokmål | Latn | Sp, Tx | Tx |
| npi | Nepali | Deva | Sp, Tx | Tx |
| nya | Nyanja | Latn | Sp, Tx | Tx |
| oci | Occitan | Latn | Sp | \-- |
| ory | Odia | Orya | Sp, Tx | Tx |
| pan | Punjabi | Guru | Sp, Tx | Tx |
| pbt | Southern Pashto | Arab | Sp, Tx | Tx |
| pes | Western Persian | Arab | Sp, Tx | Sp, Tx |
| pol | Polish | Latn | Sp, Tx | Sp, Tx |
| por | Portuguese | Latn | Sp, Tx | Sp, Tx |
| ron | Romanian | Latn | Sp, Tx | Sp, Tx |
| rus | Russian | Cyrl | Sp, Tx | Sp, Tx |
| slk | Slovak | Latn | Sp, Tx | Sp, Tx |
| slv | Slovenian | Latn | Sp, Tx | Tx |
| sna | Shona | Latn | Sp, Tx | Tx |
| snd | Sindhi | Arab | Sp, Tx | Tx |
| som | Somali | Latn | Sp, Tx | Tx |
| spa | Spanish | Latn | Sp, Tx | Sp, Tx |
| srp | Serbian | Cyrl | Sp, Tx | Tx |
| swe | Swedish | Latn | Sp, Tx | Sp, Tx |
| swh | Swahili | Latn | Sp, Tx | Sp, Tx |
| tam | Tamil | Taml | Sp, Tx | Tx |
| tel | Telugu | Telu | Sp, Tx | Sp, Tx |
| tgk | Tajik | Cyrl | Sp, Tx | Tx |
| tgl | Tagalog | Latn | Sp, Tx | Sp, Tx |
| tha | Thai | Thai | Sp, Tx | Sp, Tx |
| tur | Turkish | Latn | Sp, Tx | Sp, Tx |
| ukr | Ukrainian | Cyrl | Sp, Tx | Sp, Tx |
| urd | Urdu | Arab | Sp, Tx | Sp, Tx |
| uzn | Northern Uzbek | Latn | Sp, Tx | Sp, Tx |
| vie | Vietnamese | Latn | Sp, Tx | Sp, Tx |
| xho | Xhosa | Latn | Sp | \-- |
| yor | Yoruba | Latn | Sp, Tx | Tx |
| yue | Cantonese | Hant | Sp, Tx | Tx |
| zlm | Colloquial Malay | Latn | Sp | \-- |
| zsm | Standard Malay | Latn | Tx | Tx |
| zul | Zulu | Latn | Sp, Tx | Tx |
Note that seamlessM4T-medium supports 200 languages in the text modality, and is based on NLLB-200 (see full list in [asset card](https://github.com/facebookresearch/seamless_communication/blob/main/src/seamless_communication/cards/unity_nllb-200.yaml))
## Citation
For SeamlessM4T v2, please cite :
```bibtex
@inproceedings{seamless2023,
title="Seamless: Multilingual Expressive and Streaming Speech Translation",
author="{Seamless Communication}, Lo{\"i}c Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-juss{\`a}, Maha Elbayad, Hongyu Gong, Francisco Guzm{\'a}n, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson",
journal={ArXiv},
year={2023}
}
```
[//]: # "https://arxiv.org/abs/2312.05187" |