eyeonyou commited on
Commit
bc75090
·
verified ·
1 Parent(s): aadb29e

Model save

Browse files
Files changed (1) hide show
  1. README.md +19 -14
README.md CHANGED
@@ -1,9 +1,11 @@
1
  ---
2
- base_model: ai-forever/ruRoberta-large
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
  - accuracy
 
 
7
  model-index:
8
  - name: logs
9
  results: []
@@ -14,10 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # logs
16
 
17
- This model is a fine-tuned version of [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 2.8738
20
- - Accuracy: 0.2116
 
 
 
21
 
22
  ## Model description
23
 
@@ -37,8 +42,8 @@ More information needed
37
 
38
  The following hyperparameters were used during training:
39
  - learning_rate: 2e-05
40
- - train_batch_size: 8
41
- - eval_batch_size: 8
42
  - seed: 42
43
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
  - lr_scheduler_type: linear
@@ -46,17 +51,17 @@ The following hyperparameters were used during training:
46
 
47
  ### Training results
48
 
49
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
- | No log | 1.0 | 95 | 4.0504 | 0.0 |
52
- | No log | 2.0 | 190 | 3.5087 | 0.0529 |
53
- | No log | 3.0 | 285 | 3.1335 | 0.1958 |
54
- | No log | 4.0 | 380 | 2.8738 | 0.2116 |
55
 
56
 
57
  ### Framework versions
58
 
59
- - Transformers 4.38.2
60
  - Pytorch 2.2.1+cu121
61
  - Datasets 2.19.0
62
- - Tokenizers 0.15.2
 
1
  ---
2
+ base_model: microsoft/codebert-base
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
  - accuracy
7
+ - precision
8
+ - recall
9
  model-index:
10
  - name: logs
11
  results: []
 
16
 
17
  # logs
18
 
19
+ This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 0.0405
22
+ - Accuracy: 0.9950
23
+ - Precision: 0.9950
24
+ - Recall: 0.9950
25
+ - F1 Score: 0.9950
26
 
27
  ## Model description
28
 
 
42
 
43
  The following hyperparameters were used during training:
44
  - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
 
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
56
+ | 0.1436 | 1.0 | 907 | 0.0851 | 0.9829 | 0.9829 | 0.9829 | 0.9829 |
57
+ | 0.0737 | 2.0 | 1814 | 0.0548 | 0.9915 | 0.9915 | 0.9915 | 0.9915 |
58
+ | 0.0216 | 3.0 | 2721 | 0.0469 | 0.9917 | 0.9918 | 0.9917 | 0.9917 |
59
+ | 0.0143 | 4.0 | 3628 | 0.0405 | 0.9950 | 0.9950 | 0.9950 | 0.9950 |
60
 
61
 
62
  ### Framework versions
63
 
64
+ - Transformers 4.40.0
65
  - Pytorch 2.2.1+cu121
66
  - Datasets 2.19.0
67
+ - Tokenizers 0.19.1