--- license: apache-2.0 datasets: - euclaise/SuperMC - euclaise/prm800k_preferences model-index: - name: crow-1b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 25.51 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 25.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 24.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.28 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 49.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.83 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=euclaise/crow-1b name: Open LLM Leaderboard --- Expirements in large-scale small-scale preference learning. **This one was a failure, it benchmarks horribly, despite responding okay to trivia questions in testing** falcon-rw-1b trained with PRO (preference ranking optimization, see https://arxiv.org/abs/2306.17492) on SuperMC and PRM800K (only stage 1) for 3 epochs, using my supertrainer2000 framework. This is an expiremental model. Benchmarks coming soon. Hyperparameters: - AdamW, weight decay of 0.01, otherwise default hyperparams - Maximum LR of 1e-5 - Cosine schedule with a warmup of 5400 steps - Batch size of 4 (2 real x 2 accumulated) - Maximum of 5 epochs, early stopping (visual observation), stopped after 3 - Gradient clipping norm value of 1.0 - PRO beta of 4 Training prompt format: ``` ### Query [insert instruction here] ### Answer [insert response here] ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_euclaise__crow-1b) | Metric |Value| |---------------------------------|----:| |Avg. |29.12| |AI2 Reasoning Challenge (25-Shot)|25.51| |HellaSwag (10-Shot) |25.87| |MMLU (5-Shot) |24.80| |TruthfulQA (0-shot) |48.28| |Winogrande (5-shot) |49.41| |GSM8k (5-shot) | 0.83|