File size: 2,309 Bytes
2ec36d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e9781
 
 
 
cceed7c
11e9781
 
 
cceed7c
11e9781
 
 
cceed7c
 
 
11e9781
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license: mit
datasets:
- espnet/yodas
- facebook/voxpopuli
- facebook/multilingual_librispeech
- google/fleurs
library_name: espnet
tags:
- espnet
- audio
- speech
- multilingual
language:
  - multilingual
  - ab
  - af
  - ak
  - am
  - ar
  - as
  - av
  - ay
  - az
  - ba
  - bm
  - be
  - bn
  - bi
  - bo
  - sh
  - br
  - bg
  - ca
  - cs
  - ce
  - cv
  - ku
  - cy
  - da
  - de
  - dv
  - dz
  - el
  - en
  - eo
  - et
  - eu
  - ee
  - fo
  - fa
  - fj
  - fi
  - fr
  - fy
  - ff
  - ga
  - gl
  - gn
  - gu
  - zh
  - ht
  - ha
  - he
  - hi
  - sh
  - hu
  - hy
  - ig
  - ia
  - ms
  - is
  - it
  - jv
  - ja
  - kn
  - ka
  - kk
  - kr
  - km
  - ki
  - rw
  - ky
  - ko
  - kv
  - lo
  - la
  - lv
  - ln
  - lt
  - lb
  - lg
  - mh
  - ml
  - mr
  - ms
  - mk
  - mg
  - mt
  - mn
  - mi
  - my
  - zh
  - nl
  - 'no'
  - 'no'
  - ne
  - ny
  - oc
  - om
  - or
  - os
  - pa
  - pl
  - pt
  - ms
  - ps
  - qu
  - ro
  - rn
  - ru
  - sg
  - sk
  - sl
  - sm
  - sn
  - sd
  - so
  - es
  - sq
  - su
  - sv
  - sw
  - ta
  - tt
  - te
  - tg
  - tl
  - th
  - ti
  - ts
  - tr
  - uk
  - ms
  - vi
  - wo
  - xh
  - ms
  - yo
  - ms
  - zu
  - za
---

 [XEUS - A Cross-lingual Encoder for Universal Speech]()

 XEUS is a large-scale multilingual speech encoder by Carnegie Mellon University's WAVLab that covers over **4000** languages. It is pre-trained on over 1 million hours of publicly available speech datasets. It can be requires fine-tuning to be used in downstream tasks such as Speech Recognition or Translation. XEUS uses the [E-Branchformer]() architecture and is trained using [HuBERT]()-style masked prediction of discrete speech tokens. During training, the input speech is also augmented with acoustic noise and reverberation, making XEUS more robust. The total model size is 577M parameters.

 XEUS tops the [ML-SUPERB]() multilingual speech recognition benchmark, outperforming [MMS](), [w2v-BERT 2.0](), and [XLS-R](). XEUS also sets a new state-of-the-art on 4 tasks in the monolingual [SUPERB]() benchmark.

## Results

![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F630438615c70c21d0eae6613%2FRCAWBxSuDLXJ5zdj-OBdn.png%3C%2Fspan%3E)


![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F630438615c70c21d0eae6613%2FB3J2yL7C7XnE6-WxQbmRD.png%3C%2Fspan%3E)