File size: 2,093 Bytes
e44f4c6
 
 
 
 
 
1e1758d
 
e44f4c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- summarization
- arabic
- ar
- ur
- urdu
- mt5
- Abstractive Summarization
- generated_from_trainer
model-index:
- name: mt5-base-finetuned-ar-fa
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-base-finetuned-ar-fa

This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0303
- Rouge-1: 26.73
- Rouge-2: 12.63
- Rouge-l: 23.96
- Gen Len: 18.99
- Bertscore: 71.41

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 3.7736        | 1.0   | 3287  | 3.2308          | 24.22   | 10.11   | 21.46   | 18.99   | 70.69     |
| 3.3783        | 2.0   | 6574  | 3.1283          | 25.28   | 10.9    | 22.43   | 18.99   | 71.02     |
| 3.2351        | 3.0   | 9861  | 3.0693          | 25.77   | 11.36   | 22.93   | 19.0    | 71.2      |
| 3.1363        | 4.0   | 13148 | 3.0421          | 25.88   | 11.57   | 23.08   | 18.99   | 71.22     |
| 3.0669        | 5.0   | 16435 | 3.0303          | 26.25   | 11.84   | 23.44   | 18.99   | 71.39     |


### Framework versions

- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1