--- library_name: peft license: llama3.2 base_model: unsloth/Llama-3.2-1B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9bbe02f2-64a5-465f-bf4c-4ea2695fbef3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Llama-3.2-1B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - da89d6d0d6c47035_train_data.json ds_type: json format: custom path: /workspace/input_data/da89d6d0d6c47035_train_data.json type: field_input: v1_rejected field_instruction: prompt field_output: ground_truth_chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: error577/9bbe02f2-64a5-465f-bf4c-4ea2695fbef3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 2 mlflow_experiment_name: /tmp/da89d6d0d6c47035_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 768 max_steps: 100 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a9d1d646-8ba4-40a6-8b74-692cf970db39 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a9d1d646-8ba4-40a6-8b74-692cf970db39 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null special_tokens: pad_token: <|end_of_text|> ```

# 9bbe02f2-64a5-465f-bf4c-4ea2695fbef3 This model is a fine-tuned version of [unsloth/Llama-3.2-1B-Instruct](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3023 | 0.0005 | 1 | 1.6697 | | 1.848 | 0.0037 | 7 | 1.5881 | | 1.3956 | 0.0075 | 14 | 1.3877 | | 1.2391 | 0.0112 | 21 | 1.3272 | | 1.497 | 0.0149 | 28 | 1.2778 | | 1.4533 | 0.0187 | 35 | 1.2552 | | 1.2165 | 0.0224 | 42 | 1.2408 | | 1.1767 | 0.0262 | 49 | 1.2297 | | 0.9731 | 0.0299 | 56 | 1.2223 | | 0.8316 | 0.0336 | 63 | 1.2189 | | 1.3272 | 0.0374 | 70 | 1.2140 | | 1.1467 | 0.0411 | 77 | 1.2112 | | 1.2043 | 0.0448 | 84 | 1.2099 | | 1.3629 | 0.0486 | 91 | 1.2091 | | 1.2862 | 0.0523 | 98 | 1.2094 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1