--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-IDMGSP-danish results: [] --- # bert-base-multilingual-cased-IDMGSP-danish This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9588 - Accuracy: {'accuracy': 0.8393768817908103} - F1: {'f1': 0.8521508615495843} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------:| | 0.4777 | 1.0 | 480 | 0.3597 | {'accuracy': 0.8594056813719073} | {'f1': 0.8543926247288504} | | 0.3642 | 2.0 | 960 | 0.5526 | {'accuracy': 0.8147663306715539} | {'f1': 0.8337836250440502} | | 0.3087 | 3.0 | 1440 | 0.3296 | {'accuracy': 0.8677837413273989} | {'f1': 0.8711077080142932} | | 0.1919 | 4.0 | 1920 | 0.4540 | {'accuracy': 0.8287733996596414} | {'f1': 0.8453169347209082} | | 0.1592 | 5.0 | 2400 | 0.3791 | {'accuracy': 0.8701400706898809} | {'f1': 0.8696794534944824} | | 0.1324 | 6.0 | 2880 | 0.5328 | {'accuracy': 0.8294279355936641} | {'f1': 0.8443435670768128} | | 0.1271 | 7.0 | 3360 | 0.7168 | {'accuracy': 0.8440895405157743} | {'f1': 0.8535955746773203} | | 0.0227 | 8.0 | 3840 | 0.8978 | {'accuracy': 0.8253698128027229} | {'f1': 0.8424285376801323} | | 0.0019 | 9.0 | 4320 | 0.8289 | {'accuracy': 0.8507658070428067} | {'f1': 0.8595367175948743} | | 0.0046 | 10.0 | 4800 | 0.9588 | {'accuracy': 0.8393768817908103} | {'f1': 0.8521508615495843} | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1 - Datasets 2.14.6 - Tokenizers 0.14.1