--- language: - mn base_model: openai/whisper-medium library_name: transformers datasets: - mozilla-foundation/common_voice_17_0 - google/fleurs tags: - audio - automatic-speech-recognition widget: - example_title: Common Voice sample 1 src: sample1.flac - example_title: Common Voice sample 2 src: sample2.flac model-index: - name: whisper-medium-mn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: common_voice_17_0 config: mn split: test args: language: mn metrics: - name: Test WER type: wer value: 12.9580 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Medium Mn - Erkhembayar Gantulga This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 and Google Fleurs datasets. It achieves the following results on the evaluation set: - Loss: 0.1083 - Wer: 12.9580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Datasets used for training: - [Common Voice 17.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) - [Google Fleurs](https://huggingface.co/datasets/google/fleurs) For training, combined Common Voice 17.0 and Google Fleurs datasets: ``` from datasets import load_dataset, DatasetDict, concatenate_datasets from datasets import Audio common_voice = DatasetDict() common_voice["train"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="train+validation+validated", use_auth_token=True) common_voice["test"] = load_dataset("mozilla-foundation/common_voice_17_0", "mn", split="test", use_auth_token=True) common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes", "variant"] ) google_fleurs = DatasetDict() google_fleurs["train"] = load_dataset("google/fleurs", "mn_mn", split="train+validation", use_auth_token=True) google_fleurs["test"] = load_dataset("google/fleurs", "mn_mn", split="test", use_auth_token=True) google_fleurs = google_fleurs.remove_columns( ["id", "num_samples", "path", "raw_transcription", "gender", "lang_id", "language", "lang_group_id"] ) google_fleurs = google_fleurs.rename_column("transcription", "sentence") dataset = DatasetDict() dataset["train"] = concatenate_datasets([common_voice["train"], google_fleurs["train"]]) dataset["test"] = concatenate_datasets([common_voice["test"], google_fleurs["test"]]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2986 | 0.4912 | 500 | 0.3557 | 40.1515 | | 0.2012 | 0.9823 | 1000 | 0.2310 | 28.3512 | | 0.099 | 1.4735 | 1500 | 0.1864 | 23.4453 | | 0.0733 | 1.9646 | 2000 | 0.1405 | 18.3024 | | 0.0231 | 2.4558 | 2500 | 0.1308 | 16.5645 | | 0.0191 | 2.9470 | 3000 | 0.1155 | 14.5569 | | 0.0059 | 3.4381 | 3500 | 0.1122 | 13.4728 | | 0.006 | 3.9293 | 4000 | 0.1083 | 12.9580 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1