Erik W commited on
Commit
6d34c91
·
1 Parent(s): 60e066d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -12
README.md CHANGED
@@ -6,6 +6,9 @@ datasets:
6
  - imagefolder
7
  metrics:
8
  - accuracy
 
 
 
9
  model-index:
10
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
11
  results:
@@ -21,7 +24,16 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9755555555555555
 
 
 
 
 
 
 
 
 
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.0675
35
- - Accuracy: 0.9756
 
 
 
36
 
37
  ## Model description
38
 
@@ -51,12 +66,12 @@ More information needed
51
  ### Training hyperparameters
52
 
53
  The following hyperparameters were used during training:
54
- - learning_rate: 5e-05
55
- - train_batch_size: 32
56
- - eval_batch_size: 32
57
  - seed: 42
58
  - gradient_accumulation_steps: 4
59
- - total_train_batch_size: 128
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
@@ -64,11 +79,11 @@ The following hyperparameters were used during training:
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 0.2658 | 1.0 | 190 | 0.1311 | 0.9596 |
70
- | 0.1908 | 2.0 | 380 | 0.0730 | 0.9748 |
71
- | 0.1388 | 3.0 | 570 | 0.0675 | 0.9756 |
72
 
73
 
74
  ### Framework versions
 
6
  - imagefolder
7
  metrics:
8
  - accuracy
9
+ - f1
10
+ - precision
11
+ - recall
12
  model-index:
13
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
14
  results:
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.9637037037037037
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9638654060560553
31
+ - name: Precision
32
+ type: precision
33
+ value: 0.9647087049809714
34
+ - name: Recall
35
+ type: recall
36
+ value: 0.9637037037037037
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.1086
47
+ - Accuracy: 0.9637
48
+ - F1: 0.9639
49
+ - Precision: 0.9647
50
+ - Recall: 0.9637
51
 
52
  ## Model description
53
 
 
66
  ### Training hyperparameters
67
 
68
  The following hyperparameters were used during training:
69
+ - learning_rate: 2.5e-05
70
+ - train_batch_size: 64
71
+ - eval_batch_size: 64
72
  - seed: 42
73
  - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 256
75
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
  - lr_scheduler_type: linear
77
  - lr_scheduler_warmup_ratio: 0.1
 
79
 
80
  ### Training results
81
 
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 0.3304 | 1.0 | 95 | 0.2118 | 0.9326 | 0.9331 | 0.9379 | 0.9326 |
85
+ | 0.233 | 2.0 | 190 | 0.1295 | 0.9596 | 0.9597 | 0.9611 | 0.9596 |
86
+ | 0.1906 | 3.0 | 285 | 0.1086 | 0.9637 | 0.9639 | 0.9647 | 0.9637 |
87
 
88
 
89
  ### Framework versions