update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- odinsynth_sequence_dataset
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: odinsynth_encoder_decoder_native_hf_test
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Sequence-to-sequence Language Modeling
|
13 |
+
type: text2text-generation
|
14 |
+
dataset:
|
15 |
+
name: odinsynth_sequence_dataset
|
16 |
+
type: odinsynth_sequence_dataset
|
17 |
+
config: synthetic_surface
|
18 |
+
split: validation
|
19 |
+
args: synthetic_surface
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: accuracy
|
23 |
+
value: 0.9332272780290561
|
24 |
+
---
|
25 |
+
|
26 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
27 |
+
should probably proofread and complete it, then remove this comment. -->
|
28 |
+
|
29 |
+
# odinsynth_encoder_decoder_native_hf_test
|
30 |
+
|
31 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the odinsynth_sequence_dataset dataset.
|
32 |
+
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 0.0533
|
34 |
+
- Accuracy: 0.9332
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
- learning_rate: 5e-05
|
54 |
+
- train_batch_size: 3
|
55 |
+
- eval_batch_size: 3
|
56 |
+
- seed: 42
|
57 |
+
- gradient_accumulation_steps: 200
|
58 |
+
- total_train_batch_size: 600
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 20.0
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 6.5753 | 0.67 | 60 | 6.1666 | 0.0150 |
|
68 |
+
| 2.5262 | 1.34 | 120 | 2.1713 | 0.9345 |
|
69 |
+
| 0.2343 | 2.01 | 180 | 0.1787 | 0.9346 |
|
70 |
+
| 0.0713 | 2.68 | 240 | 0.0686 | 0.9330 |
|
71 |
+
| 0.0631 | 3.35 | 300 | 0.0621 | 0.9334 |
|
72 |
+
| 0.0603 | 4.02 | 360 | 0.0594 | 0.9332 |
|
73 |
+
| 0.0589 | 4.69 | 420 | 0.0583 | 0.9334 |
|
74 |
+
| 0.0579 | 5.36 | 480 | 0.0572 | 0.9336 |
|
75 |
+
| 0.0575 | 6.03 | 540 | 0.0566 | 0.9333 |
|
76 |
+
| 0.0561 | 6.69 | 600 | 0.0562 | 0.9333 |
|
77 |
+
| 0.0559 | 7.36 | 660 | 0.0559 | 0.9332 |
|
78 |
+
| 0.0551 | 8.03 | 720 | 0.0556 | 0.9332 |
|
79 |
+
| 0.0548 | 8.7 | 780 | 0.0552 | 0.9333 |
|
80 |
+
| 0.0546 | 9.37 | 840 | 0.0550 | 0.9333 |
|
81 |
+
| 0.0539 | 10.04 | 900 | 0.0547 | 0.9331 |
|
82 |
+
| 0.0546 | 10.71 | 960 | 0.0544 | 0.9332 |
|
83 |
+
| 0.0538 | 11.38 | 1020 | 0.0543 | 0.9335 |
|
84 |
+
| 0.0534 | 12.05 | 1080 | 0.0540 | 0.9333 |
|
85 |
+
| 0.0532 | 12.72 | 1140 | 0.0539 | 0.9334 |
|
86 |
+
| 0.0525 | 13.39 | 1200 | 0.0538 | 0.9334 |
|
87 |
+
| 0.0526 | 14.06 | 1260 | 0.0538 | 0.9331 |
|
88 |
+
| 0.0527 | 14.73 | 1320 | 0.0536 | 0.9331 |
|
89 |
+
| 0.0529 | 15.4 | 1380 | 0.0536 | 0.9331 |
|
90 |
+
| 0.0526 | 16.07 | 1440 | 0.0535 | 0.9331 |
|
91 |
+
| 0.0524 | 16.74 | 1500 | 0.0534 | 0.9333 |
|
92 |
+
| 0.0516 | 17.41 | 1560 | 0.0534 | 0.9331 |
|
93 |
+
| 0.0527 | 18.08 | 1620 | 0.0534 | 0.9332 |
|
94 |
+
| 0.0521 | 18.74 | 1680 | 0.0533 | 0.9332 |
|
95 |
+
| 0.0519 | 19.41 | 1740 | 0.0533 | 0.9332 |
|
96 |
+
|
97 |
+
|
98 |
+
### Framework versions
|
99 |
+
|
100 |
+
- Transformers 4.27.4
|
101 |
+
- Pytorch 2.0.0
|
102 |
+
- Datasets 2.11.0
|
103 |
+
- Tokenizers 0.11.0
|