--- license: apache-2.0 language: sah tags: - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice sah type: common_voice args: sah metrics: - name: Test WER type: wer value: 79.00 --- # wav2vec2-xls-r-300m-W2V2-XLSR-300M-YAKUT-SMALL This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.9068 - Wer: 0.7900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.6926 | 19.05 | 400 | 2.7538 | 1.0 | | 0.7031 | 38.1 | 800 | 0.9068 | 0.7900 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3