PEFT
Safetensors
French
File size: 11,069 Bytes
83b9995
 
 
 
 
 
 
 
 
 
 
 
c805d4c
83b9995
 
c805d4c
83b9995
 
 
 
 
c805d4c
 
 
 
 
 
 
 
83b9995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ea62ee81-8904-492e-a840-3664cf27e8fb",
   "metadata": {},
   "source": [
    "# Autoeval inference testing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fa3d9de4-4e59-468f-92f0-b5f2ec55858d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoProcessor, AutoTokenizer, AutoModelForCausalLM\n",
    "import torch\n",
    "import os\n",
    "\n",
    "try:\n",
    "    from google.colab import userdata\n",
    "    HF_TOKEN = userdata.get('HF_TOKEN')\n",
    "    os.environ['HF_TOKEN'] = HF_TOKEN\n",
    "except:\n",
    "    print(\"Not running in Google Colab, trying to get the HF_TOKEN from the environment\")\n",
    "\n",
    "\n",
    "if os.environ.get('HF_TOKEN') is None:\n",
    "    raise ValueError(\"You must set the HF_TOKEN environment variable to use this script, you also need to have access to the Llama 3.2 model family\")\n",
    "\n",
    "hugging_face_model_id = \"eltorio/Llama-3.2-3B-appreciation\"\n",
    "base_model_path = \"meta-llama/Llama-3.2-3B-Instruct\"\n",
    "device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a7696fc5-7c8e-4c3c-a5e5-8b88dcdaa2de",
   "metadata": {},
   "source": [
    "## Load the model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a0668894-d42e-4e56-8448-4b83af04b213",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1c7303ddd88143a99b18d04f0def5efc",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/2 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "processor = AutoProcessor.from_pretrained(\n",
    "    base_model_path,\n",
    "    do_image_splitting=False\n",
    ")\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(\n",
    "    base_model_path,\n",
    "    torch_dtype=torch.float16,\n",
    "    low_cpu_mem_usage=True,\n",
    ").to(device)\n",
    "model.load_adapter(hugging_face_model_id)\n",
    "tokenizer = AutoTokenizer.from_pretrained(hugging_face_model_id)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "75ed038d-649d-4c91-8804-ad9bbe3c5963",
   "metadata": {},
   "source": [
    "## Define a function for getting a multiturn conversation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "07cb81ed-7190-405a-8aea-be139cf24bc9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define a function to infer a evaluation from the incoming parameters\n",
    "def infere(trimestre: str, moyenne_1: float,moyenne_2: float,moyenne_3: float, comportement: float, participation: float, travail: float) -> str:\n",
    "\n",
    "    if trimestre == \"1\":\n",
    "        trimestre_full = \"premier trimestre\"\n",
    "        user_question = f\"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_1} de moyenne, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n",
    "    elif trimestre == \"2\":\n",
    "        trimestre_full = \"deuxième trimestre\"\n",
    "        user_question = f\"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_2} de moyenne ce trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n",
    "    elif trimestre == \"3\":\n",
    "        trimestre_full = \"troisième trimestre\"\n",
    "        user_question= f\"Veuillez rédiger une appréciation en moins de 40 mots pour le {trimestre_full} pour cet élève qui a eu {moyenne_3} de moyenne ce trimestre, {moyenne_2} au deuxième trimestre et {moyenne_1} au premier trimestre, j'ai évalué son comportement à {comportement}/10, sa participation à {participation}/10 et son travail à {travail}/10. Les notes ne doivent pas apparaître dans l'appréciation.\"\n",
    "    messages = [\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"Vous êtes une IA assistant les enseignants d'histoire-géographie en rédigeant à leur place une appréciation personnalisée pour leur élève en fonction de ses performances. Votre appreciation doit être en français, et doit aider l'élève à comprendre ses points forts et les axes d'amélioration. Votre appréciation doit comporter de 1 à 40 mots. Votre appréciation ne doit jamais comporter la valeur de la note. Votre appréciation doit utiliser le style impersonnel.Attention l'élément le plus important de votre analyse doit rester la moyenne du trimestre\"},\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": user_question},\n",
    "    ]\n",
    "    return messages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0874967f-ddcc-4b3f-9625-e934cff38d44",
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = infere(\"1\", 3, float('nan'), float('nan'), 10, 10, 10)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2686f92a-2de6-420e-a36a-3581f4df3ed8",
   "metadata": {},
   "source": [
    "## Tokenize the input"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "b58c8308-f5df-48d1-b872-2b539f1eef19",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[128000, 128006,   9125, 128007,    271,  38766,   1303,  33025,   2696,\n",
       "             25,   6790,    220,   2366,     18,    198,  15724,   2696,     25,\n",
       "            220,   1627,   5887,    220,   2366,     19,    271,  43273,  62299,\n",
       "           6316,  44190,  18328,   3625,  68061,    625,   1821,    294,      6,\n",
       "          90446,   2427,    978,   3257,    648,    665,   9517,     67,   7404,\n",
       "            519,   3869,  28130,   2035,   6316,    917,  43711,   5979,    367,\n",
       "          97252,  35965,   8047,   5019,  28130,  33013,  79351,    665,  34501,\n",
       "            409,  15907,  24601,     13,    650,  52262,  35996,  42182,  23761,\n",
       "            665,  55467,     11,   1880,  42182,  91878,    326,      6,  19010,\n",
       "          79351,   3869,  60946,    265,  15907,   3585,  75652,   1880,   3625,\n",
       "          25776,    294,  58591,  73511,   7769,     13,    650,  52262,    917,\n",
       "          43711,   5979,    367,  42182,  52962,    261,    409,    220,     16,\n",
       "           3869,    220,   1272,  78199,     13,    650,  52262,    917,  43711,\n",
       "           5979,    367,    841,  42182,  56316,  52962,    261,   1208,  51304,\n",
       "            409,   1208,   5296,     13,    650,  52262,    917,  43711,   5979,\n",
       "            367,  42182,  75144,    514,   1742,  60849,   8301,  47472,   3012,\n",
       "            326,      6,  29982,    479,    514,   5636,   3062,    409,  15265,\n",
       "          49586,  42182,   2800,    261,   1208,  52138,  26193,   3930,  75110,\n",
       "            265, 128009, 128006,    882, 128007,    271,     53,  89025,   9517,\n",
       "             67,   7420,   6316,    917,  43711,   5979,    367,    665,  40970,\n",
       "            409,    220,   1272,  78199,   5019,    514,  21134,  75110,    265,\n",
       "           5019,  42067,  33013,  79351,   7930,    264,  15925,    220,     18,\n",
       "            409,  52138,  26193,     11,    503,  34155,   4046,  26591,    978,\n",
       "           4538,  52962,   1133,   3869,    220,    605,     14,    605,     11,\n",
       "            829,  20852,   3869,    220,    605,     14,    605,   1880,   4538,\n",
       "          42775,   3869,    220,    605,     14,    605,     13,  11876,   8554,\n",
       "            841,  97569,   6502,    917,   5169,  66014,   7010,    326,      6,\n",
       "            391,    652,    978,   5979,    367,     13, 128009, 128006,  78191,\n",
       "         128007,    271]], device='cuda:0')"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "inputs = tokenizer.apply_chat_template(\n",
    "        messages,\n",
    "        tokenize = True,\n",
    "        add_generation_prompt = True,\n",
    "        return_tensors = \"pt\",).to(device)\n",
    "inputs"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "49d35c86-4d5d-4aaa-8e49-6b6e7386d4d6",
   "metadata": {},
   "source": [
    "## Generate the output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "94723775-3774-4e5f-b9bb-53b6f16fb432",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "\"Quel changement (positif) par rapport à l'an passé! X travaille plus sérieusement, il fait davantage d'effort, il participe. Son redoublement lui permettra d'avoir une deuxième année plus confortable. Continuer ainsi devrait payer au final.\""
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "outputs = model.generate(input_ids = inputs, \n",
    "                                        max_new_tokens = 90, \n",
    "                                        use_cache = True,\n",
    "                                        temperature = 1.5,\n",
    "                                        min_p = 0.1,\n",
    "                                        pad_token_id=tokenizer.eos_token_id,)\n",
    "decoded_sequences = tokenizer.batch_decode(outputs[:, inputs.shape[1]:],skip_special_tokens=True)[0]\n",
    "decoded_sequences"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5d1ba3fb-2e62-4486-9c45-3567d4d3a6f0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}