--- base_model: elnasharomar2/ANER_arabic_keyword_extraction tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ANER_arabic_keyword_extraction results: [] --- # ANER_arabic_keyword_extraction This model is a fine-tuned version of [elnasharomar2/ANER_arabic_keyword_extraction](https://huggingface.co/elnasharomar2/ANER_arabic_keyword_extraction) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4047 - Precision: 0.6061 - Recall: 0.6492 - F1: 0.6269 - Accuracy: 0.9462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0108 | 1.0 | 750 | 0.2997 | 0.5879 | 0.6302 | 0.6083 | 0.9451 | | 0.0104 | 2.0 | 1500 | 0.2822 | 0.5699 | 0.6425 | 0.6040 | 0.9428 | | 0.007 | 3.0 | 2250 | 0.3270 | 0.5965 | 0.6182 | 0.6072 | 0.9446 | | 0.0053 | 4.0 | 3000 | 0.3436 | 0.5792 | 0.6439 | 0.6099 | 0.9437 | | 0.0038 | 5.0 | 3750 | 0.3373 | 0.6063 | 0.6223 | 0.6142 | 0.9469 | | 0.0039 | 6.0 | 4500 | 0.3518 | 0.5961 | 0.6503 | 0.6220 | 0.9462 | | 0.0031 | 7.0 | 5250 | 0.3654 | 0.5887 | 0.6488 | 0.6173 | 0.9445 | | 0.0029 | 8.0 | 6000 | 0.3985 | 0.5973 | 0.6492 | 0.6222 | 0.9446 | | 0.0022 | 9.0 | 6750 | 0.3953 | 0.5927 | 0.6570 | 0.6232 | 0.9456 | | 0.002 | 10.0 | 7500 | 0.3884 | 0.6145 | 0.6365 | 0.6253 | 0.9474 | | 0.0015 | 11.0 | 8250 | 0.4170 | 0.5964 | 0.6566 | 0.6251 | 0.9446 | | 0.0015 | 12.0 | 9000 | 0.4421 | 0.5918 | 0.6629 | 0.6253 | 0.9445 | | 0.0016 | 13.0 | 9750 | 0.4313 | 0.6078 | 0.6480 | 0.6273 | 0.9465 | | 0.0025 | 14.0 | 10500 | 0.4096 | 0.6066 | 0.6432 | 0.6244 | 0.9463 | | 0.0023 | 15.0 | 11250 | 0.4047 | 0.6061 | 0.6492 | 0.6269 | 0.9462 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0