File size: 3,020 Bytes
be3f459 42814ff 874fe61 be3f459 874fe61 ebe7999 be3f459 73dd94d 874fe61 73dd94d 874fe61 be3f459 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model_index:
name: wav2vec2-lg-xlsr-en-speech-emotion-recognition
---
# Speech Emotion Recognition By Fine-Tuning Wav2Vec 2.0
The model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) for a Speech Emotion Recognition (SER) task.
The dataset used to fine-tune the original pre-trained model is the [RAVDESS dataset](https://zenodo.org/record/1188976#.YO6yI-gzaUk). This dataset provides 1440 samples of recordings from actors performing on 8 different emotions in English, which are:
```python
emotions = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised']
```
It achieves the following results on the evaluation set:
- Loss: 0.5023
- Accuracy: 0.8223
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0752 | 0.21 | 30 | 2.0505 | 0.1359 |
| 2.0119 | 0.42 | 60 | 1.9340 | 0.2474 |
| 1.8073 | 0.63 | 90 | 1.5169 | 0.3902 |
| 1.5418 | 0.84 | 120 | 1.2373 | 0.5610 |
| 1.1432 | 1.05 | 150 | 1.1579 | 0.5610 |
| 0.9645 | 1.26 | 180 | 0.9610 | 0.6167 |
| 0.8811 | 1.47 | 210 | 0.8063 | 0.7178 |
| 0.8756 | 1.68 | 240 | 0.7379 | 0.7352 |
| 0.8208 | 1.89 | 270 | 0.6839 | 0.7596 |
| 0.7118 | 2.1 | 300 | 0.6664 | 0.7735 |
| 0.4261 | 2.31 | 330 | 0.6058 | 0.8014 |
| 0.4394 | 2.52 | 360 | 0.5754 | 0.8223 |
| 0.4581 | 2.72 | 390 | 0.4719 | 0.8467 |
| 0.3967 | 2.93 | 420 | 0.5023 | 0.8223 |
## Citation
```bibtex
@misc {enrique_hernández_calabrés_2024,
author = { {Enrique Hernández Calabrés} },
title = { wav2vec2-lg-xlsr-en-speech-emotion-recognition (Revision 17cf17c) },
year = 2024,
url = { https://huggingface.co/ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition },
doi = { 10.57967/hf/2045 },
publisher = { Hugging Face }
}
```
## Contact
Any doubt, contact me on [Twitter](https://twitter.com/ehcalabres).
### Framework versions
- Transformers 4.8.2
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.3
|