--- license: apache-2.0 tags: - medical - Image Feature Extraction datasets: - Geometryyy/Cholec80 - minwoosun/CholecSeg8k library_name: timm ---

EndoViT

Paper Github

##Get Started This section provides a quick start example for using the EndoViT model. Installation: ```python pip install torch==2.0.1 timm==0.9.16 huggingface-hub==0.22.2 ``` Extracting features from a list of images. (Can also be a good starting point for using EndoViT as backbone) ```python import torch import torchvision.transforms as T from PIL import Image from pathlib import Path from timm.models.vision_transformer import VisionTransformer from functools import partial from torch import nn from huggingface_hub import snapshot_download def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]): # Define the transformations transform = T.Compose([ T.Resize((input_size, input_size)), T.ToTensor(), T.Normalize(mean=dataset_mean, std=dataset_std) ]) # Open the image image = Image.open(image_path).convert('RGB') # Apply the transformations processed_image = transform(image) return processed_image def load_model_from_huggingface(repo_id, model_filename): # Download model files model_path = snapshot_download(repo_id=repo_id, revision="main") model_weights_path = Path(model_path) / model_filename # Load model weights model_weights = torch.load(model_weights_path)['model'] # Define the model (ensure this matches your model's architecture) model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).eval() # Load the weights into the model loading = model.load_state_dict(model_weights, strict=False) return model, loading image_paths = sorted(Path('demo_images').glob('*.png')) # TODO replace with image path images = torch.stack([process_single_image(image_path) for image_path in image_paths]) device = "cuda" dtype = torch.float16 model, loading_info = load_model_from_huggingface("egeozsoy/EndoViT", "endovit.pth") model = model.to(device, dtype) print(loading_info) output = model.forward_features(images.to(device, dtype)) print(output.shape) ``` ## ✏️ Citation ``` @article{batic2024endovit, title={EndoViT: pretraining vision transformers on a large collection of endoscopic images}, author={Bati{\'c}, Dominik and Holm, Felix and {\"O}zsoy, Ege and Czempiel, Tobias and Navab, Nassir}, journal={International Journal of Computer Assisted Radiology and Surgery}, pages={1--7}, year={2024}, publisher={Springer} } ```