Ege Oezsoy
commited on
Commit
·
9841873
1
Parent(s):
ccaaa60
Adjustments
Browse files- endovit_online.py +0 -43
endovit_online.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from pathlib import Path
|
3 |
-
from timm.models.vision_transformer import VisionTransformer
|
4 |
-
from functools import partial
|
5 |
-
from torch import nn
|
6 |
-
from huggingface_hub import snapshot_download
|
7 |
-
|
8 |
-
def load_model_from_huggingface(repo_id, model_filename):
|
9 |
-
# Download model files
|
10 |
-
model_path = snapshot_download(repo_id=repo_id, revision="main")
|
11 |
-
model_weights_path = Path(model_path) / model_filename
|
12 |
-
|
13 |
-
# Load model weights
|
14 |
-
model_weights = torch.load(model_weights_path)['model']
|
15 |
-
|
16 |
-
# Define the model (ensure this matches your model's architecture)
|
17 |
-
model = VisionTransformer(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).eval()
|
18 |
-
|
19 |
-
# Load the weights into the model
|
20 |
-
loading = model.load_state_dict(model_weights, strict=False)
|
21 |
-
|
22 |
-
return model, loading
|
23 |
-
def process_single_image(image_path, input_size=224, dataset_mean=[0.3464, 0.2280, 0.2228], dataset_std=[0.2520, 0.2128, 0.2093]):
|
24 |
-
# Define the transformations
|
25 |
-
transform = T.Compose([
|
26 |
-
T.Resize((input_size, input_size)),
|
27 |
-
T.ToTensor(),
|
28 |
-
T.Normalize(mean=dataset_mean, std=dataset_std)
|
29 |
-
])
|
30 |
-
|
31 |
-
# Open the image
|
32 |
-
image = Image.open(image_path).convert('RGB')
|
33 |
-
|
34 |
-
# Apply the transformations
|
35 |
-
processed_image = transform(image)
|
36 |
-
|
37 |
-
return processed_image
|
38 |
-
|
39 |
-
device = "cuda"
|
40 |
-
dtype = torch.float16
|
41 |
-
model, loading_info = load_model_from_huggingface("egeozsoy/EndoViT", "endovit.pth")
|
42 |
-
model = model.to(device, dtype)
|
43 |
-
print(loading_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|