eformat commited on
Commit
3c6009f
·
verified ·
1 Parent(s): 79fab9c

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.0-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89f5cfaa8de12226e754bbe7b97aa10c5bb106e737210e4fa13cf09ef67829e1
3
+ size 34100216
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ibm-granite/granite-3.0-8b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ibm-granite/granite-3.0-8b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "v_proj",
24
+ "q_proj"
25
+ ],
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89f5cfaa8de12226e754bbe7b97aa10c5bb106e737210e4fa13cf09ef67829e1
3
+ size 34100216
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02c13310fc4ea3bce4485259e0bf7cfdbd8f1c54a4aab8c0bdb937336621ad8b
3
+ size 68292346
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f50f0b8cf8a8f5247d0e9729d14f2b46d5491d4b47ff4bafcc913f88950008b8
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7174de846ad34238559f1792b27ae2686c6070efbdc3aa66596ae4d2baa4d80f
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1433 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.3189792663476874,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.001594896331738437,
13
+ "grad_norm": 6.184327602386475,
14
+ "learning_rate": 2.0000000000000003e-06,
15
+ "loss": 2.5706,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.003189792663476874,
20
+ "grad_norm": 3.031334400177002,
21
+ "learning_rate": 4.000000000000001e-06,
22
+ "loss": 1.6976,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.004784688995215311,
27
+ "grad_norm": 15.139897346496582,
28
+ "learning_rate": 6e-06,
29
+ "loss": 2.245,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.006379585326953748,
34
+ "grad_norm": 3.134552478790283,
35
+ "learning_rate": 8.000000000000001e-06,
36
+ "loss": 1.6769,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.007974481658692184,
41
+ "grad_norm": 3.714085340499878,
42
+ "learning_rate": 1e-05,
43
+ "loss": 2.2285,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.009569377990430622,
48
+ "grad_norm": 9.840805053710938,
49
+ "learning_rate": 1.2e-05,
50
+ "loss": 2.7365,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.011164274322169059,
55
+ "grad_norm": 1.8881586790084839,
56
+ "learning_rate": 1.4000000000000001e-05,
57
+ "loss": 1.9256,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.012759170653907496,
62
+ "grad_norm": 7.487579822540283,
63
+ "learning_rate": 1.6000000000000003e-05,
64
+ "loss": 1.5082,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.014354066985645933,
69
+ "grad_norm": 2.4636645317077637,
70
+ "learning_rate": 1.8e-05,
71
+ "loss": 2.4033,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.01594896331738437,
76
+ "grad_norm": 2.8979716300964355,
77
+ "learning_rate": 2e-05,
78
+ "loss": 2.2099,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.017543859649122806,
83
+ "grad_norm": 4.407735824584961,
84
+ "learning_rate": 2.2000000000000003e-05,
85
+ "loss": 1.5274,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.019138755980861243,
90
+ "grad_norm": 3.755150079727173,
91
+ "learning_rate": 2.4e-05,
92
+ "loss": 1.1157,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.02073365231259968,
97
+ "grad_norm": 3.088548183441162,
98
+ "learning_rate": 2.6000000000000002e-05,
99
+ "loss": 1.864,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.022328548644338118,
104
+ "grad_norm": 3.3776023387908936,
105
+ "learning_rate": 2.8000000000000003e-05,
106
+ "loss": 2.7037,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.023923444976076555,
111
+ "grad_norm": 3.2912089824676514,
112
+ "learning_rate": 3e-05,
113
+ "loss": 1.7976,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.025518341307814992,
118
+ "grad_norm": 3.916226625442505,
119
+ "learning_rate": 3.2000000000000005e-05,
120
+ "loss": 2.115,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.02711323763955343,
125
+ "grad_norm": 1.721280574798584,
126
+ "learning_rate": 3.4000000000000007e-05,
127
+ "loss": 1.6885,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.028708133971291867,
132
+ "grad_norm": 1.8544317483901978,
133
+ "learning_rate": 3.6e-05,
134
+ "loss": 1.5542,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.030303030303030304,
139
+ "grad_norm": 3.1539909839630127,
140
+ "learning_rate": 3.8e-05,
141
+ "loss": 1.1407,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.03189792663476874,
146
+ "grad_norm": 7.259422302246094,
147
+ "learning_rate": 4e-05,
148
+ "loss": 1.4612,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.03349282296650718,
153
+ "grad_norm": 2.585329055786133,
154
+ "learning_rate": 4.2e-05,
155
+ "loss": 2.3198,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.03508771929824561,
160
+ "grad_norm": NaN,
161
+ "learning_rate": 4.2e-05,
162
+ "loss": 2.935,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.03668261562998405,
167
+ "grad_norm": Infinity,
168
+ "learning_rate": 4.2e-05,
169
+ "loss": 1.0813,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.03827751196172249,
174
+ "grad_norm": 11.25171947479248,
175
+ "learning_rate": 4.4000000000000006e-05,
176
+ "loss": 2.8932,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.03987240829346093,
181
+ "grad_norm": 11.074877738952637,
182
+ "learning_rate": 4.600000000000001e-05,
183
+ "loss": 2.218,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.04146730462519936,
188
+ "grad_norm": 14.481130599975586,
189
+ "learning_rate": 4.8e-05,
190
+ "loss": 2.2596,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0430622009569378,
195
+ "grad_norm": 19.015766143798828,
196
+ "learning_rate": 5e-05,
197
+ "loss": 2.0489,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.044657097288676235,
202
+ "grad_norm": 17.07799530029297,
203
+ "learning_rate": 5.2000000000000004e-05,
204
+ "loss": 2.1545,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.046251993620414676,
209
+ "grad_norm": 10.050027847290039,
210
+ "learning_rate": 5.4000000000000005e-05,
211
+ "loss": 1.3752,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.04784688995215311,
216
+ "grad_norm": 10.415594100952148,
217
+ "learning_rate": 5.6000000000000006e-05,
218
+ "loss": 1.9154,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.049441786283891544,
223
+ "grad_norm": 13.311936378479004,
224
+ "learning_rate": 5.8e-05,
225
+ "loss": 2.5644,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.051036682615629984,
230
+ "grad_norm": 5.880099773406982,
231
+ "learning_rate": 6e-05,
232
+ "loss": 2.248,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.05263157894736842,
237
+ "grad_norm": 2.3417255878448486,
238
+ "learning_rate": 6.2e-05,
239
+ "loss": 1.7846,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.05422647527910686,
244
+ "grad_norm": 5.300235748291016,
245
+ "learning_rate": 6.400000000000001e-05,
246
+ "loss": 2.0771,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.05582137161084529,
251
+ "grad_norm": 2.892624855041504,
252
+ "learning_rate": 6.6e-05,
253
+ "loss": 1.2795,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.05741626794258373,
258
+ "grad_norm": 5.358643054962158,
259
+ "learning_rate": 6.800000000000001e-05,
260
+ "loss": 1.8778,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.05901116427432217,
265
+ "grad_norm": 5.880906581878662,
266
+ "learning_rate": 7e-05,
267
+ "loss": 2.2137,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.06060606060606061,
272
+ "grad_norm": 20.12361717224121,
273
+ "learning_rate": 7.2e-05,
274
+ "loss": 1.744,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.06220095693779904,
279
+ "grad_norm": 5.061898231506348,
280
+ "learning_rate": 7.4e-05,
281
+ "loss": 2.4302,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.06379585326953748,
286
+ "grad_norm": NaN,
287
+ "learning_rate": 7.4e-05,
288
+ "loss": 2.0454,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.06539074960127592,
293
+ "grad_norm": 11.622527122497559,
294
+ "learning_rate": 7.6e-05,
295
+ "loss": 1.6152,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.06698564593301436,
300
+ "grad_norm": Infinity,
301
+ "learning_rate": 7.6e-05,
302
+ "loss": 2.0358,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.0685805422647528,
307
+ "grad_norm": 163.9078826904297,
308
+ "learning_rate": 7.800000000000001e-05,
309
+ "loss": 1.9115,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.07017543859649122,
314
+ "grad_norm": 15.739387512207031,
315
+ "learning_rate": 8e-05,
316
+ "loss": 2.2478,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.07177033492822966,
321
+ "grad_norm": 14.771827697753906,
322
+ "learning_rate": 8.2e-05,
323
+ "loss": 1.3414,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.0733652312599681,
328
+ "grad_norm": 11.412920951843262,
329
+ "learning_rate": 8.4e-05,
330
+ "loss": 1.5662,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.07496012759170653,
335
+ "grad_norm": 3.7569572925567627,
336
+ "learning_rate": 8.6e-05,
337
+ "loss": 1.2951,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.07655502392344497,
342
+ "grad_norm": 5.0032148361206055,
343
+ "learning_rate": 8.800000000000001e-05,
344
+ "loss": 1.6676,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.07814992025518341,
349
+ "grad_norm": 14.337443351745605,
350
+ "learning_rate": 9e-05,
351
+ "loss": 0.8836,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.07974481658692185,
356
+ "grad_norm": 15.200254440307617,
357
+ "learning_rate": 9.200000000000001e-05,
358
+ "loss": 1.1178,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.08133971291866028,
363
+ "grad_norm": 5.100391387939453,
364
+ "learning_rate": 9.4e-05,
365
+ "loss": 2.294,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.08293460925039872,
370
+ "grad_norm": 153.73574829101562,
371
+ "learning_rate": 9.6e-05,
372
+ "loss": 1.5195,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.08452950558213716,
377
+ "grad_norm": 6.9149298667907715,
378
+ "learning_rate": 9.8e-05,
379
+ "loss": 2.7116,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.0861244019138756,
384
+ "grad_norm": 50.7889404296875,
385
+ "learning_rate": 0.0001,
386
+ "loss": 1.491,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.08771929824561403,
391
+ "grad_norm": 8.714326858520508,
392
+ "learning_rate": 0.00010200000000000001,
393
+ "loss": 2.202,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.08931419457735247,
398
+ "grad_norm": 4.900972843170166,
399
+ "learning_rate": 0.00010400000000000001,
400
+ "loss": 1.3895,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.09090909090909091,
405
+ "grad_norm": 3.462311267852783,
406
+ "learning_rate": 0.00010600000000000002,
407
+ "loss": 1.6516,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.09250398724082935,
412
+ "grad_norm": NaN,
413
+ "learning_rate": 0.00010600000000000002,
414
+ "loss": 1.1269,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.09409888357256778,
419
+ "grad_norm": Infinity,
420
+ "learning_rate": 0.00010600000000000002,
421
+ "loss": 3.1964,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.09569377990430622,
426
+ "grad_norm": 32.43291091918945,
427
+ "learning_rate": 0.00010800000000000001,
428
+ "loss": 1.4105,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.09728867623604466,
433
+ "grad_norm": 80.84922790527344,
434
+ "learning_rate": 0.00011000000000000002,
435
+ "loss": 1.7675,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.09888357256778309,
440
+ "grad_norm": 34.09085464477539,
441
+ "learning_rate": 0.00011200000000000001,
442
+ "loss": 1.9853,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.10047846889952153,
447
+ "grad_norm": 3.656672954559326,
448
+ "learning_rate": 0.00011399999999999999,
449
+ "loss": 1.6841,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.10207336523125997,
454
+ "grad_norm": 11.103597640991211,
455
+ "learning_rate": 0.000116,
456
+ "loss": 1.6717,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.10366826156299841,
461
+ "grad_norm": 5.515536785125732,
462
+ "learning_rate": 0.000118,
463
+ "loss": 2.456,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.10526315789473684,
468
+ "grad_norm": 4.2976861000061035,
469
+ "learning_rate": 0.00012,
470
+ "loss": 1.3526,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.10685805422647528,
475
+ "grad_norm": 6.591656684875488,
476
+ "learning_rate": 0.000122,
477
+ "loss": 1.0501,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.10845295055821372,
482
+ "grad_norm": 16.303518295288086,
483
+ "learning_rate": 0.000124,
484
+ "loss": 1.2239,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.11004784688995216,
489
+ "grad_norm": 7.841418743133545,
490
+ "learning_rate": 0.000126,
491
+ "loss": 1.1156,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.11164274322169059,
496
+ "grad_norm": 19.40918731689453,
497
+ "learning_rate": 0.00012800000000000002,
498
+ "loss": 1.3893,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.11323763955342903,
503
+ "grad_norm": 3.5955138206481934,
504
+ "learning_rate": 0.00013000000000000002,
505
+ "loss": 1.3203,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.11483253588516747,
510
+ "grad_norm": 7.509222984313965,
511
+ "learning_rate": 0.000132,
512
+ "loss": 1.3958,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.11642743221690591,
517
+ "grad_norm": 5.788917064666748,
518
+ "learning_rate": 0.000134,
519
+ "loss": 1.4404,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.11802232854864433,
524
+ "grad_norm": 57.762603759765625,
525
+ "learning_rate": 0.00013600000000000003,
526
+ "loss": 2.1282,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.11961722488038277,
531
+ "grad_norm": 7.637035369873047,
532
+ "learning_rate": 0.000138,
533
+ "loss": 1.2525,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.12121212121212122,
538
+ "grad_norm": 371.2599182128906,
539
+ "learning_rate": 0.00014,
540
+ "loss": 3.0992,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.12280701754385964,
545
+ "grad_norm": 56.3419189453125,
546
+ "learning_rate": 0.000142,
547
+ "loss": 2.5542,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.12440191387559808,
552
+ "grad_norm": 1314.4420166015625,
553
+ "learning_rate": 0.000144,
554
+ "loss": 2.1762,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.12599681020733652,
559
+ "grad_norm": 22.95615577697754,
560
+ "learning_rate": 0.000146,
561
+ "loss": 1.2563,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.12759170653907495,
566
+ "grad_norm": 10.517797470092773,
567
+ "learning_rate": 0.000148,
568
+ "loss": 1.4259,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.1291866028708134,
573
+ "grad_norm": 37.58878707885742,
574
+ "learning_rate": 0.00015000000000000001,
575
+ "loss": 2.1527,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.13078149920255183,
580
+ "grad_norm": 16.632266998291016,
581
+ "learning_rate": 0.000152,
582
+ "loss": 1.222,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.13237639553429026,
587
+ "grad_norm": 3.820011615753174,
588
+ "learning_rate": 0.000154,
589
+ "loss": 1.3791,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.1339712918660287,
594
+ "grad_norm": 5.253367900848389,
595
+ "learning_rate": 0.00015600000000000002,
596
+ "loss": 1.9685,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.13556618819776714,
601
+ "grad_norm": 2.756962299346924,
602
+ "learning_rate": 0.00015800000000000002,
603
+ "loss": 1.0553,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.1371610845295056,
608
+ "grad_norm": 3.8879504203796387,
609
+ "learning_rate": 0.00016,
610
+ "loss": 1.5082,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.13875598086124402,
615
+ "grad_norm": 6.17363977432251,
616
+ "learning_rate": 0.000162,
617
+ "loss": 1.3968,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.14035087719298245,
622
+ "grad_norm": 4.683026313781738,
623
+ "learning_rate": 0.000164,
624
+ "loss": 0.8941,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.1419457735247209,
629
+ "grad_norm": 1.2167710065841675,
630
+ "learning_rate": 0.000166,
631
+ "loss": 1.2534,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.14354066985645933,
636
+ "grad_norm": 11.542084693908691,
637
+ "learning_rate": 0.000168,
638
+ "loss": 1.7667,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.14513556618819776,
643
+ "grad_norm": 70.17807006835938,
644
+ "learning_rate": 0.00017,
645
+ "loss": 1.4623,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.1467304625199362,
650
+ "grad_norm": 66.24053955078125,
651
+ "learning_rate": 0.000172,
652
+ "loss": 3.0195,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.14832535885167464,
657
+ "grad_norm": 3.0609261989593506,
658
+ "learning_rate": 0.000174,
659
+ "loss": 1.5645,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.14992025518341306,
664
+ "grad_norm": 4.469959735870361,
665
+ "learning_rate": 0.00017600000000000002,
666
+ "loss": 2.2086,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.15151515151515152,
671
+ "grad_norm": 3.164841651916504,
672
+ "learning_rate": 0.00017800000000000002,
673
+ "loss": 1.1951,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.15311004784688995,
678
+ "grad_norm": 6.527286052703857,
679
+ "learning_rate": 0.00018,
680
+ "loss": 1.2,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.1547049441786284,
685
+ "grad_norm": 15.101646423339844,
686
+ "learning_rate": 0.000182,
687
+ "loss": 1.3742,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.15629984051036683,
692
+ "grad_norm": 5.785974502563477,
693
+ "learning_rate": 0.00018400000000000003,
694
+ "loss": 0.9624,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.15789473684210525,
699
+ "grad_norm": 5.375400066375732,
700
+ "learning_rate": 0.00018600000000000002,
701
+ "loss": 0.9914,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.1594896331738437,
706
+ "grad_norm": 5.572772979736328,
707
+ "learning_rate": 0.000188,
708
+ "loss": 1.0925,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.16108452950558214,
713
+ "grad_norm": 3.163304567337036,
714
+ "learning_rate": 0.00019,
715
+ "loss": 1.8609,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.16267942583732056,
720
+ "grad_norm": 4.896540641784668,
721
+ "learning_rate": 0.000192,
722
+ "loss": 2.1326,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.16427432216905902,
727
+ "grad_norm": 4.353018283843994,
728
+ "learning_rate": 0.000194,
729
+ "loss": 1.8259,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.16586921850079744,
734
+ "grad_norm": 2.8431453704833984,
735
+ "learning_rate": 0.000196,
736
+ "loss": 1.5044,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.1674641148325359,
741
+ "grad_norm": 2.73559308052063,
742
+ "learning_rate": 0.00019800000000000002,
743
+ "loss": 1.4158,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.16905901116427433,
748
+ "grad_norm": 4.377661228179932,
749
+ "learning_rate": 0.0002,
750
+ "loss": 0.8568,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.17065390749601275,
755
+ "grad_norm": 33.87447738647461,
756
+ "learning_rate": 0.00019800000000000002,
757
+ "loss": 1.4858,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.1722488038277512,
762
+ "grad_norm": 3.453542470932007,
763
+ "learning_rate": 0.000196,
764
+ "loss": 1.5622,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.17384370015948963,
769
+ "grad_norm": 3.240596294403076,
770
+ "learning_rate": 0.000194,
771
+ "loss": 1.1919,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.17543859649122806,
776
+ "grad_norm": 4.169600486755371,
777
+ "learning_rate": 0.000192,
778
+ "loss": 0.973,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.17703349282296652,
783
+ "grad_norm": 6.525801181793213,
784
+ "learning_rate": 0.00019,
785
+ "loss": 1.718,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.17862838915470494,
790
+ "grad_norm": 6.783817768096924,
791
+ "learning_rate": 0.000188,
792
+ "loss": 1.2306,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.18022328548644337,
797
+ "grad_norm": 8.960905075073242,
798
+ "learning_rate": 0.00018600000000000002,
799
+ "loss": 1.3131,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.18181818181818182,
804
+ "grad_norm": 5.883425712585449,
805
+ "learning_rate": 0.00018400000000000003,
806
+ "loss": 1.7021,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.18341307814992025,
811
+ "grad_norm": 5.736645221710205,
812
+ "learning_rate": 0.000182,
813
+ "loss": 1.3815,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.1850079744816587,
818
+ "grad_norm": 4.181487083435059,
819
+ "learning_rate": 0.00018,
820
+ "loss": 1.3178,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.18660287081339713,
825
+ "grad_norm": 4.405350685119629,
826
+ "learning_rate": 0.00017800000000000002,
827
+ "loss": 1.9485,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.18819776714513556,
832
+ "grad_norm": 3.4359993934631348,
833
+ "learning_rate": 0.00017600000000000002,
834
+ "loss": 1.096,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.189792663476874,
839
+ "grad_norm": 5.447860240936279,
840
+ "learning_rate": 0.000174,
841
+ "loss": 1.0583,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.19138755980861244,
846
+ "grad_norm": 97.87931060791016,
847
+ "learning_rate": 0.000172,
848
+ "loss": 1.044,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.19298245614035087,
853
+ "grad_norm": 8.215063095092773,
854
+ "learning_rate": 0.00017,
855
+ "loss": 1.5723,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.19457735247208932,
860
+ "grad_norm": 7.788384914398193,
861
+ "learning_rate": 0.000168,
862
+ "loss": 1.9708,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.19617224880382775,
867
+ "grad_norm": 4.156929969787598,
868
+ "learning_rate": 0.000166,
869
+ "loss": 0.6143,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.19776714513556617,
874
+ "grad_norm": 8.533568382263184,
875
+ "learning_rate": 0.000164,
876
+ "loss": 1.1833,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.19936204146730463,
881
+ "grad_norm": 9.07735538482666,
882
+ "learning_rate": 0.000162,
883
+ "loss": 1.1025,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.20095693779904306,
888
+ "grad_norm": 4.636246204376221,
889
+ "learning_rate": 0.00016,
890
+ "loss": 1.0709,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.2025518341307815,
895
+ "grad_norm": 3.0601181983947754,
896
+ "learning_rate": 0.00015800000000000002,
897
+ "loss": 0.8874,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.20414673046251994,
902
+ "grad_norm": 2.8409204483032227,
903
+ "learning_rate": 0.00015600000000000002,
904
+ "loss": 1.6791,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.20574162679425836,
909
+ "grad_norm": 4.480583190917969,
910
+ "learning_rate": 0.000154,
911
+ "loss": 1.0051,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.20733652312599682,
916
+ "grad_norm": 4.790148735046387,
917
+ "learning_rate": 0.000152,
918
+ "loss": 0.7256,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.20893141945773525,
923
+ "grad_norm": 2.576634645462036,
924
+ "learning_rate": 0.00015000000000000001,
925
+ "loss": 1.5364,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.21052631578947367,
930
+ "grad_norm": 3.0406057834625244,
931
+ "learning_rate": 0.000148,
932
+ "loss": 1.1761,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.21212121212121213,
937
+ "grad_norm": 3.3600714206695557,
938
+ "learning_rate": 0.000146,
939
+ "loss": 1.7465,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.21371610845295055,
944
+ "grad_norm": 5.360437393188477,
945
+ "learning_rate": 0.000144,
946
+ "loss": 1.8165,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.215311004784689,
951
+ "grad_norm": 7.102390289306641,
952
+ "learning_rate": 0.000142,
953
+ "loss": 1.2619,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.21690590111642744,
958
+ "grad_norm": 1.9597784280776978,
959
+ "learning_rate": 0.00014,
960
+ "loss": 1.9762,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.21850079744816586,
965
+ "grad_norm": 3.9632205963134766,
966
+ "learning_rate": 0.000138,
967
+ "loss": 1.4078,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.22009569377990432,
972
+ "grad_norm": 2.1894729137420654,
973
+ "learning_rate": 0.00013600000000000003,
974
+ "loss": 0.8851,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.22169059011164274,
979
+ "grad_norm": Infinity,
980
+ "learning_rate": 0.00013600000000000003,
981
+ "loss": 1.4997,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.22328548644338117,
986
+ "grad_norm": 52.63427734375,
987
+ "learning_rate": 0.000134,
988
+ "loss": 1.214,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.22488038277511962,
993
+ "grad_norm": 4.334165573120117,
994
+ "learning_rate": 0.000132,
995
+ "loss": 0.9465,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.22647527910685805,
1000
+ "grad_norm": 4.615323066711426,
1001
+ "learning_rate": 0.00013000000000000002,
1002
+ "loss": 1.3691,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.22807017543859648,
1007
+ "grad_norm": 4.519163131713867,
1008
+ "learning_rate": 0.00012800000000000002,
1009
+ "loss": 1.116,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.22966507177033493,
1014
+ "grad_norm": 2.9541022777557373,
1015
+ "learning_rate": 0.000126,
1016
+ "loss": 1.6713,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.23125996810207336,
1021
+ "grad_norm": 4.985620021820068,
1022
+ "learning_rate": 0.000124,
1023
+ "loss": 0.4975,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.23285486443381181,
1028
+ "grad_norm": 2.776371955871582,
1029
+ "learning_rate": 0.000122,
1030
+ "loss": 1.255,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.23444976076555024,
1035
+ "grad_norm": 7.810369491577148,
1036
+ "learning_rate": 0.00012,
1037
+ "loss": 1.1688,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.23604465709728867,
1042
+ "grad_norm": 2.63275146484375,
1043
+ "learning_rate": 0.000118,
1044
+ "loss": 2.4762,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.23763955342902712,
1049
+ "grad_norm": 3.5678646564483643,
1050
+ "learning_rate": 0.000116,
1051
+ "loss": 2.1922,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.23923444976076555,
1056
+ "grad_norm": 6.582940578460693,
1057
+ "learning_rate": 0.00011399999999999999,
1058
+ "loss": 2.0777,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.24082934609250398,
1063
+ "grad_norm": 4.511703014373779,
1064
+ "learning_rate": 0.00011200000000000001,
1065
+ "loss": 2.3411,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.24242424242424243,
1070
+ "grad_norm": 8.474757194519043,
1071
+ "learning_rate": 0.00011000000000000002,
1072
+ "loss": 1.2168,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.24401913875598086,
1077
+ "grad_norm": 5.071783542633057,
1078
+ "learning_rate": 0.00010800000000000001,
1079
+ "loss": 1.268,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.24561403508771928,
1084
+ "grad_norm": 7.242175579071045,
1085
+ "learning_rate": 0.00010600000000000002,
1086
+ "loss": 1.5954,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.24720893141945774,
1091
+ "grad_norm": 4.464336395263672,
1092
+ "learning_rate": 0.00010400000000000001,
1093
+ "loss": 0.6807,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.24880382775119617,
1098
+ "grad_norm": 41.45453643798828,
1099
+ "learning_rate": 0.00010200000000000001,
1100
+ "loss": 1.0059,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.2503987240829346,
1105
+ "grad_norm": 12.17771053314209,
1106
+ "learning_rate": 0.0001,
1107
+ "loss": 1.1615,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.25199362041467305,
1112
+ "grad_norm": 2.6309285163879395,
1113
+ "learning_rate": 9.8e-05,
1114
+ "loss": 1.2695,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.2535885167464115,
1119
+ "grad_norm": 2.0649020671844482,
1120
+ "learning_rate": 9.6e-05,
1121
+ "loss": 0.8868,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.2551834130781499,
1126
+ "grad_norm": 2.4663641452789307,
1127
+ "learning_rate": 9.4e-05,
1128
+ "loss": 1.063,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.2567783094098884,
1133
+ "grad_norm": 2.168086051940918,
1134
+ "learning_rate": 9.200000000000001e-05,
1135
+ "loss": 1.8179,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.2583732057416268,
1140
+ "grad_norm": 2.884896755218506,
1141
+ "learning_rate": 9e-05,
1142
+ "loss": 0.9745,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.25996810207336524,
1147
+ "grad_norm": 4.95428466796875,
1148
+ "learning_rate": 8.800000000000001e-05,
1149
+ "loss": 1.7127,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.26156299840510366,
1154
+ "grad_norm": 2.4961204528808594,
1155
+ "learning_rate": 8.6e-05,
1156
+ "loss": 1.3255,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.2631578947368421,
1161
+ "grad_norm": 4.987830638885498,
1162
+ "learning_rate": 8.4e-05,
1163
+ "loss": 1.6393,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.2647527910685805,
1168
+ "grad_norm": 2.74229097366333,
1169
+ "learning_rate": 8.2e-05,
1170
+ "loss": 1.2829,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.266347687400319,
1175
+ "grad_norm": 3.4278724193573,
1176
+ "learning_rate": 8e-05,
1177
+ "loss": 1.8641,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.2679425837320574,
1182
+ "grad_norm": 3.168607473373413,
1183
+ "learning_rate": 7.800000000000001e-05,
1184
+ "loss": 0.9005,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.26953748006379585,
1189
+ "grad_norm": 2.2907590866088867,
1190
+ "learning_rate": 7.6e-05,
1191
+ "loss": 1.8272,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.2711323763955343,
1196
+ "grad_norm": 11.338663101196289,
1197
+ "learning_rate": 7.4e-05,
1198
+ "loss": 0.8515,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.2727272727272727,
1203
+ "grad_norm": 3.8454625606536865,
1204
+ "learning_rate": 7.2e-05,
1205
+ "loss": 0.7245,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.2743221690590112,
1210
+ "grad_norm": 4.1359968185424805,
1211
+ "learning_rate": 7e-05,
1212
+ "loss": 1.1218,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.2759170653907496,
1217
+ "grad_norm": 6.582677841186523,
1218
+ "learning_rate": 6.800000000000001e-05,
1219
+ "loss": 1.032,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.27751196172248804,
1224
+ "grad_norm": 4.796580791473389,
1225
+ "learning_rate": 6.6e-05,
1226
+ "loss": 0.9661,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.27910685805422647,
1231
+ "grad_norm": 3.352660655975342,
1232
+ "learning_rate": 6.400000000000001e-05,
1233
+ "loss": 0.981,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.2807017543859649,
1238
+ "grad_norm": 7.768184185028076,
1239
+ "learning_rate": 6.2e-05,
1240
+ "loss": 1.2995,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.2822966507177033,
1245
+ "grad_norm": 2.4985883235931396,
1246
+ "learning_rate": 6e-05,
1247
+ "loss": 0.5018,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.2838915470494418,
1252
+ "grad_norm": 4.418503284454346,
1253
+ "learning_rate": 5.8e-05,
1254
+ "loss": 0.6436,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.28548644338118023,
1259
+ "grad_norm": 5.020095348358154,
1260
+ "learning_rate": 5.6000000000000006e-05,
1261
+ "loss": 0.9538,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.28708133971291866,
1266
+ "grad_norm": 3.5376362800598145,
1267
+ "learning_rate": 5.4000000000000005e-05,
1268
+ "loss": 1.2548,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.2886762360446571,
1273
+ "grad_norm": 5.339288234710693,
1274
+ "learning_rate": 5.2000000000000004e-05,
1275
+ "loss": 1.237,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.2902711323763955,
1280
+ "grad_norm": 65.73676300048828,
1281
+ "learning_rate": 5e-05,
1282
+ "loss": 0.7367,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.291866028708134,
1287
+ "grad_norm": 2.4018213748931885,
1288
+ "learning_rate": 4.8e-05,
1289
+ "loss": 0.9429,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.2934609250398724,
1294
+ "grad_norm": 14.804810523986816,
1295
+ "learning_rate": 4.600000000000001e-05,
1296
+ "loss": 1.6304,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.29505582137161085,
1301
+ "grad_norm": 3.041649580001831,
1302
+ "learning_rate": 4.4000000000000006e-05,
1303
+ "loss": 1.2724,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.2966507177033493,
1308
+ "grad_norm": 4.808304309844971,
1309
+ "learning_rate": 4.2e-05,
1310
+ "loss": 1.1529,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.2982456140350877,
1315
+ "grad_norm": 3.3830454349517822,
1316
+ "learning_rate": 4e-05,
1317
+ "loss": 1.2314,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.29984051036682613,
1322
+ "grad_norm": 8.842469215393066,
1323
+ "learning_rate": 3.8e-05,
1324
+ "loss": 1.0924,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.3014354066985646,
1329
+ "grad_norm": 2.8933732509613037,
1330
+ "learning_rate": 3.6e-05,
1331
+ "loss": 1.1168,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.30303030303030304,
1336
+ "grad_norm": 3.3943734169006348,
1337
+ "learning_rate": 3.4000000000000007e-05,
1338
+ "loss": 1.361,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.30462519936204147,
1343
+ "grad_norm": 7.02134895324707,
1344
+ "learning_rate": 3.2000000000000005e-05,
1345
+ "loss": 1.6184,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.3062200956937799,
1350
+ "grad_norm": 2.4864888191223145,
1351
+ "learning_rate": 3e-05,
1352
+ "loss": 1.1632,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.3078149920255183,
1357
+ "grad_norm": 2.510240316390991,
1358
+ "learning_rate": 2.8000000000000003e-05,
1359
+ "loss": 0.644,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.3094098883572568,
1364
+ "grad_norm": 4.508166313171387,
1365
+ "learning_rate": 2.6000000000000002e-05,
1366
+ "loss": 1.1349,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.31100478468899523,
1371
+ "grad_norm": 4.515146732330322,
1372
+ "learning_rate": 2.4e-05,
1373
+ "loss": 0.8318,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.31259968102073366,
1378
+ "grad_norm": 4.47897481918335,
1379
+ "learning_rate": 2.2000000000000003e-05,
1380
+ "loss": 2.0528,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.3141945773524721,
1385
+ "grad_norm": 4.270202159881592,
1386
+ "learning_rate": 2e-05,
1387
+ "loss": 0.9385,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.3157894736842105,
1392
+ "grad_norm": 6.670559883117676,
1393
+ "learning_rate": 1.8e-05,
1394
+ "loss": 1.011,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.31738437001594894,
1399
+ "grad_norm": 326.71722412109375,
1400
+ "learning_rate": 1.6000000000000003e-05,
1401
+ "loss": 1.1715,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.3189792663476874,
1406
+ "grad_norm": 3.589381456375122,
1407
+ "learning_rate": 1.4000000000000001e-05,
1408
+ "loss": 1.48,
1409
+ "step": 200
1410
+ }
1411
+ ],
1412
+ "logging_steps": 1,
1413
+ "max_steps": 200,
1414
+ "num_input_tokens_seen": 0,
1415
+ "num_train_epochs": 1,
1416
+ "save_steps": 500,
1417
+ "stateful_callbacks": {
1418
+ "TrainerControl": {
1419
+ "args": {
1420
+ "should_epoch_stop": false,
1421
+ "should_evaluate": false,
1422
+ "should_log": false,
1423
+ "should_save": true,
1424
+ "should_training_stop": true
1425
+ },
1426
+ "attributes": {}
1427
+ }
1428
+ },
1429
+ "total_flos": 1717079281606656.0,
1430
+ "train_batch_size": 1,
1431
+ "trial_name": null,
1432
+ "trial_params": null
1433
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbeca8543db02fcfeadc3c4228271f956928a6a493c876c23301fdba09fd91c4
3
+ size 5176
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbeca8543db02fcfeadc3c4228271f956928a6a493c876c23301fdba09fd91c4
3
+ size 5176