Upload model
Browse files- added_tokens.json +3 -0
- config.json +168 -0
- config.json.backup +168 -0
- configuration_prismatic.py +140 -0
- dataset_statistics.json +127 -0
- generation_config.json +7 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +989 -0
- modeling_prismatic.py +577 -0
- preprocessor_config.json +114 -0
- processing_prismatic.py +252 -0
- processor_config.json +6 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +53 -0
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<PAD>": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"arch_specifier": "no-align+fused-gelu-mlp",
|
3 |
+
"architectures": [
|
4 |
+
"OpenVLAForActionPrediction"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_prismatic.OpenVLAConfig",
|
8 |
+
"AutoModelForVision2Seq": "modeling_prismatic.OpenVLAForActionPrediction"
|
9 |
+
},
|
10 |
+
"hf_llm_id": "meta-llama/Llama-2-7b-hf",
|
11 |
+
"image_resize_strategy": "resize-naive",
|
12 |
+
"image_sizes": [
|
13 |
+
224,
|
14 |
+
224
|
15 |
+
],
|
16 |
+
"llm_backbone_id": "llama2-7b-pure",
|
17 |
+
"llm_max_length": 2048,
|
18 |
+
"model_type": "openvla",
|
19 |
+
"n_action_bins": 256,
|
20 |
+
"norm_stats": {
|
21 |
+
"stack_d4_ep2500": {
|
22 |
+
"action": {
|
23 |
+
"mask": [
|
24 |
+
true,
|
25 |
+
true,
|
26 |
+
true,
|
27 |
+
true,
|
28 |
+
true,
|
29 |
+
true,
|
30 |
+
false
|
31 |
+
],
|
32 |
+
"max": [
|
33 |
+
1.0,
|
34 |
+
1.0,
|
35 |
+
1.0,
|
36 |
+
0.5565457940101624,
|
37 |
+
0.4232454001903534,
|
38 |
+
1.0,
|
39 |
+
1.0
|
40 |
+
],
|
41 |
+
"mean": [
|
42 |
+
0.09986738115549088,
|
43 |
+
-0.0013057694304734468,
|
44 |
+
-0.08638227730989456,
|
45 |
+
-0.002634916454553604,
|
46 |
+
0.006230492144823074,
|
47 |
+
0.009978465735912323,
|
48 |
+
0.5483779907226562
|
49 |
+
],
|
50 |
+
"min": [
|
51 |
+
-1.0,
|
52 |
+
-1.0,
|
53 |
+
-1.0,
|
54 |
+
-0.9515255689620972,
|
55 |
+
-0.5631587505340576,
|
56 |
+
-1.0,
|
57 |
+
0.0
|
58 |
+
],
|
59 |
+
"q01": [
|
60 |
+
-1.0,
|
61 |
+
-1.0,
|
62 |
+
-0.8218039345741271,
|
63 |
+
-0.14995443165302277,
|
64 |
+
-0.18481428027153016,
|
65 |
+
-1.0,
|
66 |
+
0.0
|
67 |
+
],
|
68 |
+
"q99": [
|
69 |
+
1.0,
|
70 |
+
1.0,
|
71 |
+
0.9939390635490418,
|
72 |
+
0.15024740934371952,
|
73 |
+
0.20038485765457162,
|
74 |
+
1.0,
|
75 |
+
1.0
|
76 |
+
],
|
77 |
+
"std": [
|
78 |
+
0.46981191635131836,
|
79 |
+
0.46453216671943665,
|
80 |
+
0.35307812690734863,
|
81 |
+
0.0622715950012207,
|
82 |
+
0.07906968891620636,
|
83 |
+
0.337395578622818,
|
84 |
+
0.49727049469947815
|
85 |
+
]
|
86 |
+
},
|
87 |
+
"num_trajectories": 2500,
|
88 |
+
"num_transitions": 276169,
|
89 |
+
"proprio": {
|
90 |
+
"max": [
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0
|
98 |
+
],
|
99 |
+
"mean": [
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
0.0
|
107 |
+
],
|
108 |
+
"min": [
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0,
|
113 |
+
0.0,
|
114 |
+
0.0,
|
115 |
+
0.0
|
116 |
+
],
|
117 |
+
"q01": [
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0
|
125 |
+
],
|
126 |
+
"q99": [
|
127 |
+
0.0,
|
128 |
+
0.0,
|
129 |
+
0.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0
|
134 |
+
],
|
135 |
+
"std": [
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
0.0,
|
140 |
+
0.0,
|
141 |
+
0.0,
|
142 |
+
0.0
|
143 |
+
]
|
144 |
+
}
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"output_projector_states": false,
|
148 |
+
"pad_to_multiple_of": 64,
|
149 |
+
"pad_token_id": 32000,
|
150 |
+
"text_config": {
|
151 |
+
"model_type": "llama",
|
152 |
+
"pad_token_id": 32000,
|
153 |
+
"torch_dtype": "bfloat16",
|
154 |
+
"vocab_size": 32064
|
155 |
+
},
|
156 |
+
"timm_model_ids": [
|
157 |
+
"vit_large_patch14_reg4_dinov2.lvd142m",
|
158 |
+
"vit_so400m_patch14_siglip_224"
|
159 |
+
],
|
160 |
+
"timm_override_act_layers": [
|
161 |
+
null,
|
162 |
+
null
|
163 |
+
],
|
164 |
+
"torch_dtype": "bfloat16",
|
165 |
+
"transformers_version": "4.40.1",
|
166 |
+
"use_fused_vision_backbone": true,
|
167 |
+
"vision_backbone_id": "dinosiglip-vit-so-224px"
|
168 |
+
}
|
config.json.backup
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"arch_specifier": "no-align+fused-gelu-mlp",
|
3 |
+
"architectures": [
|
4 |
+
"OpenVLAForActionPrediction"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_prismatic.OpenVLAConfig",
|
8 |
+
"AutoModelForVision2Seq": "modeling_prismatic.OpenVLAForActionPrediction"
|
9 |
+
},
|
10 |
+
"hf_llm_id": "meta-llama/Llama-2-7b-hf",
|
11 |
+
"image_resize_strategy": "resize-naive",
|
12 |
+
"image_sizes": [
|
13 |
+
224,
|
14 |
+
224
|
15 |
+
],
|
16 |
+
"llm_backbone_id": "llama2-7b-pure",
|
17 |
+
"llm_max_length": 2048,
|
18 |
+
"model_type": "openvla",
|
19 |
+
"n_action_bins": 256,
|
20 |
+
"norm_stats": {
|
21 |
+
"stack_d4_ep2500": {
|
22 |
+
"action": {
|
23 |
+
"mask": [
|
24 |
+
true,
|
25 |
+
true,
|
26 |
+
true,
|
27 |
+
true,
|
28 |
+
true,
|
29 |
+
true,
|
30 |
+
false
|
31 |
+
],
|
32 |
+
"max": [
|
33 |
+
1.0,
|
34 |
+
1.0,
|
35 |
+
1.0,
|
36 |
+
0.5565457940101624,
|
37 |
+
0.4232454001903534,
|
38 |
+
1.0,
|
39 |
+
1.0
|
40 |
+
],
|
41 |
+
"mean": [
|
42 |
+
0.09986738115549088,
|
43 |
+
-0.0013057694304734468,
|
44 |
+
-0.08638227730989456,
|
45 |
+
-0.002634916454553604,
|
46 |
+
0.006230492144823074,
|
47 |
+
0.009978465735912323,
|
48 |
+
0.5483779907226562
|
49 |
+
],
|
50 |
+
"min": [
|
51 |
+
-1.0,
|
52 |
+
-1.0,
|
53 |
+
-1.0,
|
54 |
+
-0.9515255689620972,
|
55 |
+
-0.5631587505340576,
|
56 |
+
-1.0,
|
57 |
+
0.0
|
58 |
+
],
|
59 |
+
"q01": [
|
60 |
+
-1.0,
|
61 |
+
-1.0,
|
62 |
+
-0.8218039345741271,
|
63 |
+
-0.14995443165302277,
|
64 |
+
-0.18481428027153016,
|
65 |
+
-1.0,
|
66 |
+
0.0
|
67 |
+
],
|
68 |
+
"q99": [
|
69 |
+
1.0,
|
70 |
+
1.0,
|
71 |
+
0.9939390635490418,
|
72 |
+
0.15024740934371952,
|
73 |
+
0.20038485765457162,
|
74 |
+
1.0,
|
75 |
+
1.0
|
76 |
+
],
|
77 |
+
"std": [
|
78 |
+
0.46981191635131836,
|
79 |
+
0.46453216671943665,
|
80 |
+
0.35307812690734863,
|
81 |
+
0.0622715950012207,
|
82 |
+
0.07906968891620636,
|
83 |
+
0.337395578622818,
|
84 |
+
0.49727049469947815
|
85 |
+
]
|
86 |
+
},
|
87 |
+
"num_trajectories": 2500,
|
88 |
+
"num_transitions": 276169,
|
89 |
+
"proprio": {
|
90 |
+
"max": [
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0,
|
95 |
+
0.0,
|
96 |
+
0.0,
|
97 |
+
0.0
|
98 |
+
],
|
99 |
+
"mean": [
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0,
|
104 |
+
0.0,
|
105 |
+
0.0,
|
106 |
+
0.0
|
107 |
+
],
|
108 |
+
"min": [
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0,
|
113 |
+
0.0,
|
114 |
+
0.0,
|
115 |
+
0.0
|
116 |
+
],
|
117 |
+
"q01": [
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0,
|
122 |
+
0.0,
|
123 |
+
0.0,
|
124 |
+
0.0
|
125 |
+
],
|
126 |
+
"q99": [
|
127 |
+
0.0,
|
128 |
+
0.0,
|
129 |
+
0.0,
|
130 |
+
0.0,
|
131 |
+
0.0,
|
132 |
+
0.0,
|
133 |
+
0.0
|
134 |
+
],
|
135 |
+
"std": [
|
136 |
+
0.0,
|
137 |
+
0.0,
|
138 |
+
0.0,
|
139 |
+
0.0,
|
140 |
+
0.0,
|
141 |
+
0.0,
|
142 |
+
0.0
|
143 |
+
]
|
144 |
+
}
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"output_projector_states": false,
|
148 |
+
"pad_to_multiple_of": 64,
|
149 |
+
"pad_token_id": 32000,
|
150 |
+
"text_config": {
|
151 |
+
"model_type": "llama",
|
152 |
+
"pad_token_id": 32000,
|
153 |
+
"torch_dtype": "bfloat16",
|
154 |
+
"vocab_size": 32064
|
155 |
+
},
|
156 |
+
"timm_model_ids": [
|
157 |
+
"vit_large_patch14_reg4_dinov2.lvd142m",
|
158 |
+
"vit_so400m_patch14_siglip_224"
|
159 |
+
],
|
160 |
+
"timm_override_act_layers": [
|
161 |
+
null,
|
162 |
+
null
|
163 |
+
],
|
164 |
+
"torch_dtype": "bfloat16",
|
165 |
+
"transformers_version": "4.40.1",
|
166 |
+
"use_fused_vision_backbone": true,
|
167 |
+
"vision_backbone_id": "dinosiglip-vit-so-224px"
|
168 |
+
}
|
configuration_prismatic.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
configuration_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
|
5 |
+
Default configuration specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, Dict, List, Optional
|
9 |
+
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
from transformers.models.auto import CONFIG_MAPPING
|
12 |
+
|
13 |
+
# === Utilities for Mapping Prismatic names to HF names ===
|
14 |
+
# fmt: off
|
15 |
+
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
|
16 |
+
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
|
17 |
+
|
18 |
+
"clip-vit-l-336px": [336],
|
19 |
+
"siglip-vit-so400m-384px": [384],
|
20 |
+
|
21 |
+
"dinoclip-vit-l-336px": [336, 336],
|
22 |
+
"dinosiglip-vit-so-224px": [224, 224],
|
23 |
+
"dinosiglip-vit-so-384px": [384, 384],
|
24 |
+
}
|
25 |
+
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
|
26 |
+
"clip-vit-l": ["vit_large_patch14_clip_224.openai"],
|
27 |
+
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
|
28 |
+
|
29 |
+
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
|
30 |
+
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
|
31 |
+
|
32 |
+
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
|
33 |
+
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
|
34 |
+
|
35 |
+
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
|
36 |
+
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
|
37 |
+
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
|
38 |
+
}
|
39 |
+
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
|
40 |
+
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
|
41 |
+
"dinov2-vit-l": [None], "in1k-vit-l": [None],
|
42 |
+
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
|
43 |
+
"dinoclip-vit-l-336px": [None, "quick_gelu"],
|
44 |
+
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
|
45 |
+
}
|
46 |
+
|
47 |
+
LLM_BACKBONE_TO_HF_PATH = {
|
48 |
+
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
|
49 |
+
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
|
50 |
+
|
51 |
+
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
|
52 |
+
|
53 |
+
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
|
54 |
+
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
|
55 |
+
|
56 |
+
"phi-2-3b": "microsoft/phi-2",
|
57 |
+
}
|
58 |
+
LLM_BACKBONE_TO_HF_METACLASS = {
|
59 |
+
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
|
60 |
+
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama",
|
61 |
+
|
62 |
+
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
|
63 |
+
|
64 |
+
"phi-2-3b": "phi",
|
65 |
+
}
|
66 |
+
|
67 |
+
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
|
68 |
+
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
|
69 |
+
# fmt: on
|
70 |
+
|
71 |
+
|
72 |
+
class PrismaticConfig(PretrainedConfig):
|
73 |
+
model_type: str = "prismatic"
|
74 |
+
is_composition: bool = False
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
vision_backbone_id: str = "siglip-vit-so400m",
|
79 |
+
llm_backbone_id: str = "vicuna-v15-7b",
|
80 |
+
arch_specifier: str = "no-align+gelu-mlp",
|
81 |
+
use_fused_vision_backbone: Optional[bool] = None,
|
82 |
+
image_resize_strategy: str = "letterbox",
|
83 |
+
text_config: Optional[Dict[str, Any]] = None,
|
84 |
+
llm_max_length: int = 2048,
|
85 |
+
pad_token_id: int = 32000,
|
86 |
+
pad_to_multiple_of: int = 64,
|
87 |
+
output_projector_states: bool = False,
|
88 |
+
**kwargs: str,
|
89 |
+
) -> None:
|
90 |
+
if vision_backbone_id not in VALID_VISION_BACKBONES:
|
91 |
+
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
|
92 |
+
|
93 |
+
if llm_backbone_id not in VALID_LLM_BACKBONES:
|
94 |
+
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
|
95 |
+
|
96 |
+
# Set Prismatic Configuration Fields
|
97 |
+
self.vision_backbone_id = vision_backbone_id
|
98 |
+
self.llm_backbone_id = llm_backbone_id
|
99 |
+
self.arch_specifier = arch_specifier
|
100 |
+
self.output_projector_states = output_projector_states
|
101 |
+
|
102 |
+
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
|
103 |
+
self.use_fused_vision_backbone = (
|
104 |
+
use_fused_vision_backbone
|
105 |
+
if use_fused_vision_backbone is not None
|
106 |
+
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
|
107 |
+
)
|
108 |
+
|
109 |
+
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
|
110 |
+
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
|
111 |
+
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
|
112 |
+
self.image_resize_strategy = image_resize_strategy
|
113 |
+
|
114 |
+
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
|
115 |
+
self.llm_max_length = llm_max_length
|
116 |
+
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
|
117 |
+
|
118 |
+
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
|
119 |
+
self.text_config = (
|
120 |
+
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
|
121 |
+
if text_config is not None
|
122 |
+
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
|
123 |
+
)
|
124 |
+
|
125 |
+
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
|
126 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
127 |
+
|
128 |
+
|
129 |
+
class OpenVLAConfig(PrismaticConfig):
|
130 |
+
model_type: str = "openvla"
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
|
135 |
+
n_action_bins: int = 256,
|
136 |
+
**kwargs: str,
|
137 |
+
) -> None:
|
138 |
+
self.norm_stats, self.n_action_bins = norm_stats, n_action_bins
|
139 |
+
|
140 |
+
super().__init__(**kwargs)
|
dataset_statistics.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"stack_d4_ep2500": {
|
3 |
+
"action": {
|
4 |
+
"mean": [
|
5 |
+
0.09986738115549088,
|
6 |
+
-0.0013057694304734468,
|
7 |
+
-0.08638227730989456,
|
8 |
+
-0.002634916454553604,
|
9 |
+
0.006230492144823074,
|
10 |
+
0.009978465735912323,
|
11 |
+
0.5483779907226562
|
12 |
+
],
|
13 |
+
"std": [
|
14 |
+
0.46981191635131836,
|
15 |
+
0.46453216671943665,
|
16 |
+
0.35307812690734863,
|
17 |
+
0.0622715950012207,
|
18 |
+
0.07906968891620636,
|
19 |
+
0.337395578622818,
|
20 |
+
0.49727049469947815
|
21 |
+
],
|
22 |
+
"max": [
|
23 |
+
1.0,
|
24 |
+
1.0,
|
25 |
+
1.0,
|
26 |
+
0.5565457940101624,
|
27 |
+
0.4232454001903534,
|
28 |
+
1.0,
|
29 |
+
1.0
|
30 |
+
],
|
31 |
+
"min": [
|
32 |
+
-1.0,
|
33 |
+
-1.0,
|
34 |
+
-1.0,
|
35 |
+
-0.9515255689620972,
|
36 |
+
-0.5631587505340576,
|
37 |
+
-1.0,
|
38 |
+
0.0
|
39 |
+
],
|
40 |
+
"q01": [
|
41 |
+
-1.0,
|
42 |
+
-1.0,
|
43 |
+
-0.8218039345741271,
|
44 |
+
-0.14995443165302277,
|
45 |
+
-0.18481428027153016,
|
46 |
+
-1.0,
|
47 |
+
0.0
|
48 |
+
],
|
49 |
+
"q99": [
|
50 |
+
1.0,
|
51 |
+
1.0,
|
52 |
+
0.9939390635490418,
|
53 |
+
0.15024740934371952,
|
54 |
+
0.20038485765457162,
|
55 |
+
1.0,
|
56 |
+
1.0
|
57 |
+
],
|
58 |
+
"mask": [
|
59 |
+
true,
|
60 |
+
true,
|
61 |
+
true,
|
62 |
+
true,
|
63 |
+
true,
|
64 |
+
true,
|
65 |
+
false
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"proprio": {
|
69 |
+
"mean": [
|
70 |
+
0.0,
|
71 |
+
0.0,
|
72 |
+
0.0,
|
73 |
+
0.0,
|
74 |
+
0.0,
|
75 |
+
0.0,
|
76 |
+
0.0
|
77 |
+
],
|
78 |
+
"std": [
|
79 |
+
0.0,
|
80 |
+
0.0,
|
81 |
+
0.0,
|
82 |
+
0.0,
|
83 |
+
0.0,
|
84 |
+
0.0,
|
85 |
+
0.0
|
86 |
+
],
|
87 |
+
"max": [
|
88 |
+
0.0,
|
89 |
+
0.0,
|
90 |
+
0.0,
|
91 |
+
0.0,
|
92 |
+
0.0,
|
93 |
+
0.0,
|
94 |
+
0.0
|
95 |
+
],
|
96 |
+
"min": [
|
97 |
+
0.0,
|
98 |
+
0.0,
|
99 |
+
0.0,
|
100 |
+
0.0,
|
101 |
+
0.0,
|
102 |
+
0.0,
|
103 |
+
0.0
|
104 |
+
],
|
105 |
+
"q01": [
|
106 |
+
0.0,
|
107 |
+
0.0,
|
108 |
+
0.0,
|
109 |
+
0.0,
|
110 |
+
0.0,
|
111 |
+
0.0,
|
112 |
+
0.0
|
113 |
+
],
|
114 |
+
"q99": [
|
115 |
+
0.0,
|
116 |
+
0.0,
|
117 |
+
0.0,
|
118 |
+
0.0,
|
119 |
+
0.0,
|
120 |
+
0.0,
|
121 |
+
0.0
|
122 |
+
]
|
123 |
+
},
|
124 |
+
"num_transitions": 276169,
|
125 |
+
"num_trajectories": 2500
|
126 |
+
}
|
127 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 32000,
|
6 |
+
"transformers_version": "4.40.1"
|
7 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4d3d534a541ce1e762b6d698ab7377341bcc998bbf8cfead0f9e1aa3f2bc109
|
3 |
+
size 6948961960
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03512a703b1eda872ef946c0e9ab2cf692a85b7988ed46a967242fa0bccc8bb0
|
3 |
+
size 6971232040
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18427735b6b55ca852c9e84e5a95f59d6be79db4711c16dbf57600153d809e4e
|
3 |
+
size 1162406824
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,989 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15082474368
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"language_model.lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
37 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
39 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
40 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
41 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
42 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
47 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
50 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
51 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
52 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
53 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
144 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
146 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
147 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
153 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
155 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
157 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
159 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
161 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
162 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
163 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
164 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
165 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
166 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
167 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
168 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
169 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
170 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
171 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
172 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
173 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
174 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
175 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
176 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
177 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
178 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
179 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
180 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
181 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
182 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
183 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
184 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
185 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
186 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
187 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
188 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
189 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
190 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
191 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
192 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
193 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
194 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
195 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
196 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
197 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
198 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
199 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
200 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
201 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
202 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
203 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
204 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
205 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
206 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
209 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
210 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
212 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
213 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
214 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
215 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"language_model.model.norm.weight": "model-00003-of-00003.safetensors",
|
297 |
+
"projector.fc1.bias": "model-00001-of-00003.safetensors",
|
298 |
+
"projector.fc1.weight": "model-00001-of-00003.safetensors",
|
299 |
+
"projector.fc2.bias": "model-00001-of-00003.safetensors",
|
300 |
+
"projector.fc2.weight": "model-00001-of-00003.safetensors",
|
301 |
+
"projector.fc3.bias": "model-00001-of-00003.safetensors",
|
302 |
+
"projector.fc3.weight": "model-00001-of-00003.safetensors",
|
303 |
+
"vision_backbone.featurizer.blocks.0.attn.proj.bias": "model-00001-of-00003.safetensors",
|
304 |
+
"vision_backbone.featurizer.blocks.0.attn.proj.weight": "model-00001-of-00003.safetensors",
|
305 |
+
"vision_backbone.featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
306 |
+
"vision_backbone.featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
307 |
+
"vision_backbone.featurizer.blocks.0.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
308 |
+
"vision_backbone.featurizer.blocks.0.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
309 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
310 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
311 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
312 |
+
"vision_backbone.featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
313 |
+
"vision_backbone.featurizer.blocks.0.norm1.bias": "model-00001-of-00003.safetensors",
|
314 |
+
"vision_backbone.featurizer.blocks.0.norm1.weight": "model-00001-of-00003.safetensors",
|
315 |
+
"vision_backbone.featurizer.blocks.0.norm2.bias": "model-00001-of-00003.safetensors",
|
316 |
+
"vision_backbone.featurizer.blocks.0.norm2.weight": "model-00001-of-00003.safetensors",
|
317 |
+
"vision_backbone.featurizer.blocks.1.attn.proj.bias": "model-00001-of-00003.safetensors",
|
318 |
+
"vision_backbone.featurizer.blocks.1.attn.proj.weight": "model-00001-of-00003.safetensors",
|
319 |
+
"vision_backbone.featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
320 |
+
"vision_backbone.featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
321 |
+
"vision_backbone.featurizer.blocks.1.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
322 |
+
"vision_backbone.featurizer.blocks.1.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
323 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
324 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
325 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
326 |
+
"vision_backbone.featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
327 |
+
"vision_backbone.featurizer.blocks.1.norm1.bias": "model-00001-of-00003.safetensors",
|
328 |
+
"vision_backbone.featurizer.blocks.1.norm1.weight": "model-00001-of-00003.safetensors",
|
329 |
+
"vision_backbone.featurizer.blocks.1.norm2.bias": "model-00001-of-00003.safetensors",
|
330 |
+
"vision_backbone.featurizer.blocks.1.norm2.weight": "model-00001-of-00003.safetensors",
|
331 |
+
"vision_backbone.featurizer.blocks.10.attn.proj.bias": "model-00001-of-00003.safetensors",
|
332 |
+
"vision_backbone.featurizer.blocks.10.attn.proj.weight": "model-00001-of-00003.safetensors",
|
333 |
+
"vision_backbone.featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
334 |
+
"vision_backbone.featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
335 |
+
"vision_backbone.featurizer.blocks.10.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
336 |
+
"vision_backbone.featurizer.blocks.10.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
337 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
338 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
339 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
340 |
+
"vision_backbone.featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
341 |
+
"vision_backbone.featurizer.blocks.10.norm1.bias": "model-00001-of-00003.safetensors",
|
342 |
+
"vision_backbone.featurizer.blocks.10.norm1.weight": "model-00001-of-00003.safetensors",
|
343 |
+
"vision_backbone.featurizer.blocks.10.norm2.bias": "model-00001-of-00003.safetensors",
|
344 |
+
"vision_backbone.featurizer.blocks.10.norm2.weight": "model-00001-of-00003.safetensors",
|
345 |
+
"vision_backbone.featurizer.blocks.11.attn.proj.bias": "model-00001-of-00003.safetensors",
|
346 |
+
"vision_backbone.featurizer.blocks.11.attn.proj.weight": "model-00001-of-00003.safetensors",
|
347 |
+
"vision_backbone.featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
348 |
+
"vision_backbone.featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"vision_backbone.featurizer.blocks.11.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
350 |
+
"vision_backbone.featurizer.blocks.11.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
351 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
352 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
353 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
354 |
+
"vision_backbone.featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
355 |
+
"vision_backbone.featurizer.blocks.11.norm1.bias": "model-00001-of-00003.safetensors",
|
356 |
+
"vision_backbone.featurizer.blocks.11.norm1.weight": "model-00001-of-00003.safetensors",
|
357 |
+
"vision_backbone.featurizer.blocks.11.norm2.bias": "model-00001-of-00003.safetensors",
|
358 |
+
"vision_backbone.featurizer.blocks.11.norm2.weight": "model-00001-of-00003.safetensors",
|
359 |
+
"vision_backbone.featurizer.blocks.12.attn.proj.bias": "model-00001-of-00003.safetensors",
|
360 |
+
"vision_backbone.featurizer.blocks.12.attn.proj.weight": "model-00001-of-00003.safetensors",
|
361 |
+
"vision_backbone.featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
362 |
+
"vision_backbone.featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
363 |
+
"vision_backbone.featurizer.blocks.12.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
364 |
+
"vision_backbone.featurizer.blocks.12.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
365 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
366 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
367 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
368 |
+
"vision_backbone.featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
369 |
+
"vision_backbone.featurizer.blocks.12.norm1.bias": "model-00001-of-00003.safetensors",
|
370 |
+
"vision_backbone.featurizer.blocks.12.norm1.weight": "model-00001-of-00003.safetensors",
|
371 |
+
"vision_backbone.featurizer.blocks.12.norm2.bias": "model-00001-of-00003.safetensors",
|
372 |
+
"vision_backbone.featurizer.blocks.12.norm2.weight": "model-00001-of-00003.safetensors",
|
373 |
+
"vision_backbone.featurizer.blocks.13.attn.proj.bias": "model-00001-of-00003.safetensors",
|
374 |
+
"vision_backbone.featurizer.blocks.13.attn.proj.weight": "model-00001-of-00003.safetensors",
|
375 |
+
"vision_backbone.featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
376 |
+
"vision_backbone.featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
377 |
+
"vision_backbone.featurizer.blocks.13.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
378 |
+
"vision_backbone.featurizer.blocks.13.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
379 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
380 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
381 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
382 |
+
"vision_backbone.featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
383 |
+
"vision_backbone.featurizer.blocks.13.norm1.bias": "model-00001-of-00003.safetensors",
|
384 |
+
"vision_backbone.featurizer.blocks.13.norm1.weight": "model-00001-of-00003.safetensors",
|
385 |
+
"vision_backbone.featurizer.blocks.13.norm2.bias": "model-00001-of-00003.safetensors",
|
386 |
+
"vision_backbone.featurizer.blocks.13.norm2.weight": "model-00001-of-00003.safetensors",
|
387 |
+
"vision_backbone.featurizer.blocks.14.attn.proj.bias": "model-00001-of-00003.safetensors",
|
388 |
+
"vision_backbone.featurizer.blocks.14.attn.proj.weight": "model-00001-of-00003.safetensors",
|
389 |
+
"vision_backbone.featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
390 |
+
"vision_backbone.featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
391 |
+
"vision_backbone.featurizer.blocks.14.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
392 |
+
"vision_backbone.featurizer.blocks.14.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
393 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
394 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
395 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
396 |
+
"vision_backbone.featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
397 |
+
"vision_backbone.featurizer.blocks.14.norm1.bias": "model-00001-of-00003.safetensors",
|
398 |
+
"vision_backbone.featurizer.blocks.14.norm1.weight": "model-00001-of-00003.safetensors",
|
399 |
+
"vision_backbone.featurizer.blocks.14.norm2.bias": "model-00001-of-00003.safetensors",
|
400 |
+
"vision_backbone.featurizer.blocks.14.norm2.weight": "model-00001-of-00003.safetensors",
|
401 |
+
"vision_backbone.featurizer.blocks.15.attn.proj.bias": "model-00001-of-00003.safetensors",
|
402 |
+
"vision_backbone.featurizer.blocks.15.attn.proj.weight": "model-00001-of-00003.safetensors",
|
403 |
+
"vision_backbone.featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
404 |
+
"vision_backbone.featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
405 |
+
"vision_backbone.featurizer.blocks.15.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
406 |
+
"vision_backbone.featurizer.blocks.15.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
407 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
408 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
409 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
410 |
+
"vision_backbone.featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
411 |
+
"vision_backbone.featurizer.blocks.15.norm1.bias": "model-00001-of-00003.safetensors",
|
412 |
+
"vision_backbone.featurizer.blocks.15.norm1.weight": "model-00001-of-00003.safetensors",
|
413 |
+
"vision_backbone.featurizer.blocks.15.norm2.bias": "model-00001-of-00003.safetensors",
|
414 |
+
"vision_backbone.featurizer.blocks.15.norm2.weight": "model-00001-of-00003.safetensors",
|
415 |
+
"vision_backbone.featurizer.blocks.16.attn.proj.bias": "model-00001-of-00003.safetensors",
|
416 |
+
"vision_backbone.featurizer.blocks.16.attn.proj.weight": "model-00001-of-00003.safetensors",
|
417 |
+
"vision_backbone.featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
418 |
+
"vision_backbone.featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
419 |
+
"vision_backbone.featurizer.blocks.16.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
420 |
+
"vision_backbone.featurizer.blocks.16.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
421 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
422 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
423 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
424 |
+
"vision_backbone.featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
425 |
+
"vision_backbone.featurizer.blocks.16.norm1.bias": "model-00001-of-00003.safetensors",
|
426 |
+
"vision_backbone.featurizer.blocks.16.norm1.weight": "model-00001-of-00003.safetensors",
|
427 |
+
"vision_backbone.featurizer.blocks.16.norm2.bias": "model-00001-of-00003.safetensors",
|
428 |
+
"vision_backbone.featurizer.blocks.16.norm2.weight": "model-00001-of-00003.safetensors",
|
429 |
+
"vision_backbone.featurizer.blocks.17.attn.proj.bias": "model-00001-of-00003.safetensors",
|
430 |
+
"vision_backbone.featurizer.blocks.17.attn.proj.weight": "model-00001-of-00003.safetensors",
|
431 |
+
"vision_backbone.featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
432 |
+
"vision_backbone.featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
433 |
+
"vision_backbone.featurizer.blocks.17.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
434 |
+
"vision_backbone.featurizer.blocks.17.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
435 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
436 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
437 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
438 |
+
"vision_backbone.featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
439 |
+
"vision_backbone.featurizer.blocks.17.norm1.bias": "model-00001-of-00003.safetensors",
|
440 |
+
"vision_backbone.featurizer.blocks.17.norm1.weight": "model-00001-of-00003.safetensors",
|
441 |
+
"vision_backbone.featurizer.blocks.17.norm2.bias": "model-00001-of-00003.safetensors",
|
442 |
+
"vision_backbone.featurizer.blocks.17.norm2.weight": "model-00001-of-00003.safetensors",
|
443 |
+
"vision_backbone.featurizer.blocks.18.attn.proj.bias": "model-00001-of-00003.safetensors",
|
444 |
+
"vision_backbone.featurizer.blocks.18.attn.proj.weight": "model-00001-of-00003.safetensors",
|
445 |
+
"vision_backbone.featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
446 |
+
"vision_backbone.featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
447 |
+
"vision_backbone.featurizer.blocks.18.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
448 |
+
"vision_backbone.featurizer.blocks.18.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
449 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
450 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
451 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
452 |
+
"vision_backbone.featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
453 |
+
"vision_backbone.featurizer.blocks.18.norm1.bias": "model-00001-of-00003.safetensors",
|
454 |
+
"vision_backbone.featurizer.blocks.18.norm1.weight": "model-00001-of-00003.safetensors",
|
455 |
+
"vision_backbone.featurizer.blocks.18.norm2.bias": "model-00001-of-00003.safetensors",
|
456 |
+
"vision_backbone.featurizer.blocks.18.norm2.weight": "model-00001-of-00003.safetensors",
|
457 |
+
"vision_backbone.featurizer.blocks.19.attn.proj.bias": "model-00001-of-00003.safetensors",
|
458 |
+
"vision_backbone.featurizer.blocks.19.attn.proj.weight": "model-00001-of-00003.safetensors",
|
459 |
+
"vision_backbone.featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
460 |
+
"vision_backbone.featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
461 |
+
"vision_backbone.featurizer.blocks.19.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
462 |
+
"vision_backbone.featurizer.blocks.19.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
463 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
464 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
465 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
466 |
+
"vision_backbone.featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
467 |
+
"vision_backbone.featurizer.blocks.19.norm1.bias": "model-00001-of-00003.safetensors",
|
468 |
+
"vision_backbone.featurizer.blocks.19.norm1.weight": "model-00001-of-00003.safetensors",
|
469 |
+
"vision_backbone.featurizer.blocks.19.norm2.bias": "model-00001-of-00003.safetensors",
|
470 |
+
"vision_backbone.featurizer.blocks.19.norm2.weight": "model-00001-of-00003.safetensors",
|
471 |
+
"vision_backbone.featurizer.blocks.2.attn.proj.bias": "model-00001-of-00003.safetensors",
|
472 |
+
"vision_backbone.featurizer.blocks.2.attn.proj.weight": "model-00001-of-00003.safetensors",
|
473 |
+
"vision_backbone.featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
474 |
+
"vision_backbone.featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
475 |
+
"vision_backbone.featurizer.blocks.2.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
476 |
+
"vision_backbone.featurizer.blocks.2.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
477 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
478 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
479 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
480 |
+
"vision_backbone.featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
481 |
+
"vision_backbone.featurizer.blocks.2.norm1.bias": "model-00001-of-00003.safetensors",
|
482 |
+
"vision_backbone.featurizer.blocks.2.norm1.weight": "model-00001-of-00003.safetensors",
|
483 |
+
"vision_backbone.featurizer.blocks.2.norm2.bias": "model-00001-of-00003.safetensors",
|
484 |
+
"vision_backbone.featurizer.blocks.2.norm2.weight": "model-00001-of-00003.safetensors",
|
485 |
+
"vision_backbone.featurizer.blocks.20.attn.proj.bias": "model-00001-of-00003.safetensors",
|
486 |
+
"vision_backbone.featurizer.blocks.20.attn.proj.weight": "model-00001-of-00003.safetensors",
|
487 |
+
"vision_backbone.featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
488 |
+
"vision_backbone.featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
489 |
+
"vision_backbone.featurizer.blocks.20.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
490 |
+
"vision_backbone.featurizer.blocks.20.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
491 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
492 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
493 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
494 |
+
"vision_backbone.featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
495 |
+
"vision_backbone.featurizer.blocks.20.norm1.bias": "model-00001-of-00003.safetensors",
|
496 |
+
"vision_backbone.featurizer.blocks.20.norm1.weight": "model-00001-of-00003.safetensors",
|
497 |
+
"vision_backbone.featurizer.blocks.20.norm2.bias": "model-00001-of-00003.safetensors",
|
498 |
+
"vision_backbone.featurizer.blocks.20.norm2.weight": "model-00001-of-00003.safetensors",
|
499 |
+
"vision_backbone.featurizer.blocks.21.attn.proj.bias": "model-00001-of-00003.safetensors",
|
500 |
+
"vision_backbone.featurizer.blocks.21.attn.proj.weight": "model-00001-of-00003.safetensors",
|
501 |
+
"vision_backbone.featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
502 |
+
"vision_backbone.featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
503 |
+
"vision_backbone.featurizer.blocks.21.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
504 |
+
"vision_backbone.featurizer.blocks.21.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
505 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
506 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
507 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
508 |
+
"vision_backbone.featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
509 |
+
"vision_backbone.featurizer.blocks.21.norm1.bias": "model-00001-of-00003.safetensors",
|
510 |
+
"vision_backbone.featurizer.blocks.21.norm1.weight": "model-00001-of-00003.safetensors",
|
511 |
+
"vision_backbone.featurizer.blocks.21.norm2.bias": "model-00001-of-00003.safetensors",
|
512 |
+
"vision_backbone.featurizer.blocks.21.norm2.weight": "model-00001-of-00003.safetensors",
|
513 |
+
"vision_backbone.featurizer.blocks.22.attn.proj.bias": "model-00001-of-00003.safetensors",
|
514 |
+
"vision_backbone.featurizer.blocks.22.attn.proj.weight": "model-00001-of-00003.safetensors",
|
515 |
+
"vision_backbone.featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
516 |
+
"vision_backbone.featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
517 |
+
"vision_backbone.featurizer.blocks.22.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
518 |
+
"vision_backbone.featurizer.blocks.22.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
519 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
520 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
521 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
522 |
+
"vision_backbone.featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
523 |
+
"vision_backbone.featurizer.blocks.22.norm1.bias": "model-00001-of-00003.safetensors",
|
524 |
+
"vision_backbone.featurizer.blocks.22.norm1.weight": "model-00001-of-00003.safetensors",
|
525 |
+
"vision_backbone.featurizer.blocks.22.norm2.bias": "model-00001-of-00003.safetensors",
|
526 |
+
"vision_backbone.featurizer.blocks.22.norm2.weight": "model-00001-of-00003.safetensors",
|
527 |
+
"vision_backbone.featurizer.blocks.23.attn.proj.bias": "model-00001-of-00003.safetensors",
|
528 |
+
"vision_backbone.featurizer.blocks.23.attn.proj.weight": "model-00001-of-00003.safetensors",
|
529 |
+
"vision_backbone.featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
530 |
+
"vision_backbone.featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
531 |
+
"vision_backbone.featurizer.blocks.23.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
532 |
+
"vision_backbone.featurizer.blocks.23.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
533 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
534 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
535 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
536 |
+
"vision_backbone.featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
537 |
+
"vision_backbone.featurizer.blocks.23.norm1.bias": "model-00001-of-00003.safetensors",
|
538 |
+
"vision_backbone.featurizer.blocks.23.norm1.weight": "model-00001-of-00003.safetensors",
|
539 |
+
"vision_backbone.featurizer.blocks.23.norm2.bias": "model-00001-of-00003.safetensors",
|
540 |
+
"vision_backbone.featurizer.blocks.23.norm2.weight": "model-00001-of-00003.safetensors",
|
541 |
+
"vision_backbone.featurizer.blocks.3.attn.proj.bias": "model-00001-of-00003.safetensors",
|
542 |
+
"vision_backbone.featurizer.blocks.3.attn.proj.weight": "model-00001-of-00003.safetensors",
|
543 |
+
"vision_backbone.featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
544 |
+
"vision_backbone.featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
545 |
+
"vision_backbone.featurizer.blocks.3.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
546 |
+
"vision_backbone.featurizer.blocks.3.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
547 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
548 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
549 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
550 |
+
"vision_backbone.featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
551 |
+
"vision_backbone.featurizer.blocks.3.norm1.bias": "model-00001-of-00003.safetensors",
|
552 |
+
"vision_backbone.featurizer.blocks.3.norm1.weight": "model-00001-of-00003.safetensors",
|
553 |
+
"vision_backbone.featurizer.blocks.3.norm2.bias": "model-00001-of-00003.safetensors",
|
554 |
+
"vision_backbone.featurizer.blocks.3.norm2.weight": "model-00001-of-00003.safetensors",
|
555 |
+
"vision_backbone.featurizer.blocks.4.attn.proj.bias": "model-00001-of-00003.safetensors",
|
556 |
+
"vision_backbone.featurizer.blocks.4.attn.proj.weight": "model-00001-of-00003.safetensors",
|
557 |
+
"vision_backbone.featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
558 |
+
"vision_backbone.featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
559 |
+
"vision_backbone.featurizer.blocks.4.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
560 |
+
"vision_backbone.featurizer.blocks.4.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
561 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
562 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
563 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
564 |
+
"vision_backbone.featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
565 |
+
"vision_backbone.featurizer.blocks.4.norm1.bias": "model-00001-of-00003.safetensors",
|
566 |
+
"vision_backbone.featurizer.blocks.4.norm1.weight": "model-00001-of-00003.safetensors",
|
567 |
+
"vision_backbone.featurizer.blocks.4.norm2.bias": "model-00001-of-00003.safetensors",
|
568 |
+
"vision_backbone.featurizer.blocks.4.norm2.weight": "model-00001-of-00003.safetensors",
|
569 |
+
"vision_backbone.featurizer.blocks.5.attn.proj.bias": "model-00001-of-00003.safetensors",
|
570 |
+
"vision_backbone.featurizer.blocks.5.attn.proj.weight": "model-00001-of-00003.safetensors",
|
571 |
+
"vision_backbone.featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
572 |
+
"vision_backbone.featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
573 |
+
"vision_backbone.featurizer.blocks.5.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
574 |
+
"vision_backbone.featurizer.blocks.5.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
575 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
576 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
577 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
578 |
+
"vision_backbone.featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
579 |
+
"vision_backbone.featurizer.blocks.5.norm1.bias": "model-00001-of-00003.safetensors",
|
580 |
+
"vision_backbone.featurizer.blocks.5.norm1.weight": "model-00001-of-00003.safetensors",
|
581 |
+
"vision_backbone.featurizer.blocks.5.norm2.bias": "model-00001-of-00003.safetensors",
|
582 |
+
"vision_backbone.featurizer.blocks.5.norm2.weight": "model-00001-of-00003.safetensors",
|
583 |
+
"vision_backbone.featurizer.blocks.6.attn.proj.bias": "model-00001-of-00003.safetensors",
|
584 |
+
"vision_backbone.featurizer.blocks.6.attn.proj.weight": "model-00001-of-00003.safetensors",
|
585 |
+
"vision_backbone.featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
586 |
+
"vision_backbone.featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
587 |
+
"vision_backbone.featurizer.blocks.6.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
588 |
+
"vision_backbone.featurizer.blocks.6.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
589 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
590 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
591 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
592 |
+
"vision_backbone.featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
593 |
+
"vision_backbone.featurizer.blocks.6.norm1.bias": "model-00001-of-00003.safetensors",
|
594 |
+
"vision_backbone.featurizer.blocks.6.norm1.weight": "model-00001-of-00003.safetensors",
|
595 |
+
"vision_backbone.featurizer.blocks.6.norm2.bias": "model-00001-of-00003.safetensors",
|
596 |
+
"vision_backbone.featurizer.blocks.6.norm2.weight": "model-00001-of-00003.safetensors",
|
597 |
+
"vision_backbone.featurizer.blocks.7.attn.proj.bias": "model-00001-of-00003.safetensors",
|
598 |
+
"vision_backbone.featurizer.blocks.7.attn.proj.weight": "model-00001-of-00003.safetensors",
|
599 |
+
"vision_backbone.featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
600 |
+
"vision_backbone.featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
601 |
+
"vision_backbone.featurizer.blocks.7.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
602 |
+
"vision_backbone.featurizer.blocks.7.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
603 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
604 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
605 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
606 |
+
"vision_backbone.featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
607 |
+
"vision_backbone.featurizer.blocks.7.norm1.bias": "model-00001-of-00003.safetensors",
|
608 |
+
"vision_backbone.featurizer.blocks.7.norm1.weight": "model-00001-of-00003.safetensors",
|
609 |
+
"vision_backbone.featurizer.blocks.7.norm2.bias": "model-00001-of-00003.safetensors",
|
610 |
+
"vision_backbone.featurizer.blocks.7.norm2.weight": "model-00001-of-00003.safetensors",
|
611 |
+
"vision_backbone.featurizer.blocks.8.attn.proj.bias": "model-00001-of-00003.safetensors",
|
612 |
+
"vision_backbone.featurizer.blocks.8.attn.proj.weight": "model-00001-of-00003.safetensors",
|
613 |
+
"vision_backbone.featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
614 |
+
"vision_backbone.featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
615 |
+
"vision_backbone.featurizer.blocks.8.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
616 |
+
"vision_backbone.featurizer.blocks.8.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
617 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
618 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
619 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
620 |
+
"vision_backbone.featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
621 |
+
"vision_backbone.featurizer.blocks.8.norm1.bias": "model-00001-of-00003.safetensors",
|
622 |
+
"vision_backbone.featurizer.blocks.8.norm1.weight": "model-00001-of-00003.safetensors",
|
623 |
+
"vision_backbone.featurizer.blocks.8.norm2.bias": "model-00001-of-00003.safetensors",
|
624 |
+
"vision_backbone.featurizer.blocks.8.norm2.weight": "model-00001-of-00003.safetensors",
|
625 |
+
"vision_backbone.featurizer.blocks.9.attn.proj.bias": "model-00001-of-00003.safetensors",
|
626 |
+
"vision_backbone.featurizer.blocks.9.attn.proj.weight": "model-00001-of-00003.safetensors",
|
627 |
+
"vision_backbone.featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
628 |
+
"vision_backbone.featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
629 |
+
"vision_backbone.featurizer.blocks.9.ls1.scale_factor": "model-00001-of-00003.safetensors",
|
630 |
+
"vision_backbone.featurizer.blocks.9.ls2.scale_factor": "model-00001-of-00003.safetensors",
|
631 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
632 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
633 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
634 |
+
"vision_backbone.featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
635 |
+
"vision_backbone.featurizer.blocks.9.norm1.bias": "model-00001-of-00003.safetensors",
|
636 |
+
"vision_backbone.featurizer.blocks.9.norm1.weight": "model-00001-of-00003.safetensors",
|
637 |
+
"vision_backbone.featurizer.blocks.9.norm2.bias": "model-00001-of-00003.safetensors",
|
638 |
+
"vision_backbone.featurizer.blocks.9.norm2.weight": "model-00001-of-00003.safetensors",
|
639 |
+
"vision_backbone.featurizer.cls_token": "model-00001-of-00003.safetensors",
|
640 |
+
"vision_backbone.featurizer.norm.bias": "model-00001-of-00003.safetensors",
|
641 |
+
"vision_backbone.featurizer.norm.weight": "model-00001-of-00003.safetensors",
|
642 |
+
"vision_backbone.featurizer.patch_embed.proj.bias": "model-00001-of-00003.safetensors",
|
643 |
+
"vision_backbone.featurizer.patch_embed.proj.weight": "model-00001-of-00003.safetensors",
|
644 |
+
"vision_backbone.featurizer.pos_embed": "model-00001-of-00003.safetensors",
|
645 |
+
"vision_backbone.featurizer.reg_token": "model-00001-of-00003.safetensors",
|
646 |
+
"vision_backbone.fused_featurizer.attn_pool.kv.bias": "model-00001-of-00003.safetensors",
|
647 |
+
"vision_backbone.fused_featurizer.attn_pool.kv.weight": "model-00001-of-00003.safetensors",
|
648 |
+
"vision_backbone.fused_featurizer.attn_pool.latent": "model-00001-of-00003.safetensors",
|
649 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
650 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
651 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
652 |
+
"vision_backbone.fused_featurizer.attn_pool.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
653 |
+
"vision_backbone.fused_featurizer.attn_pool.norm.bias": "model-00001-of-00003.safetensors",
|
654 |
+
"vision_backbone.fused_featurizer.attn_pool.norm.weight": "model-00001-of-00003.safetensors",
|
655 |
+
"vision_backbone.fused_featurizer.attn_pool.proj.bias": "model-00001-of-00003.safetensors",
|
656 |
+
"vision_backbone.fused_featurizer.attn_pool.proj.weight": "model-00001-of-00003.safetensors",
|
657 |
+
"vision_backbone.fused_featurizer.attn_pool.q.bias": "model-00001-of-00003.safetensors",
|
658 |
+
"vision_backbone.fused_featurizer.attn_pool.q.weight": "model-00001-of-00003.safetensors",
|
659 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.proj.bias": "model-00001-of-00003.safetensors",
|
660 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.proj.weight": "model-00001-of-00003.safetensors",
|
661 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
662 |
+
"vision_backbone.fused_featurizer.blocks.0.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
663 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
664 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
665 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
666 |
+
"vision_backbone.fused_featurizer.blocks.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
667 |
+
"vision_backbone.fused_featurizer.blocks.0.norm1.bias": "model-00001-of-00003.safetensors",
|
668 |
+
"vision_backbone.fused_featurizer.blocks.0.norm1.weight": "model-00001-of-00003.safetensors",
|
669 |
+
"vision_backbone.fused_featurizer.blocks.0.norm2.bias": "model-00001-of-00003.safetensors",
|
670 |
+
"vision_backbone.fused_featurizer.blocks.0.norm2.weight": "model-00001-of-00003.safetensors",
|
671 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.proj.bias": "model-00001-of-00003.safetensors",
|
672 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.proj.weight": "model-00001-of-00003.safetensors",
|
673 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
674 |
+
"vision_backbone.fused_featurizer.blocks.1.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
675 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
676 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
677 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
678 |
+
"vision_backbone.fused_featurizer.blocks.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
679 |
+
"vision_backbone.fused_featurizer.blocks.1.norm1.bias": "model-00001-of-00003.safetensors",
|
680 |
+
"vision_backbone.fused_featurizer.blocks.1.norm1.weight": "model-00001-of-00003.safetensors",
|
681 |
+
"vision_backbone.fused_featurizer.blocks.1.norm2.bias": "model-00001-of-00003.safetensors",
|
682 |
+
"vision_backbone.fused_featurizer.blocks.1.norm2.weight": "model-00001-of-00003.safetensors",
|
683 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.proj.bias": "model-00001-of-00003.safetensors",
|
684 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.proj.weight": "model-00001-of-00003.safetensors",
|
685 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
686 |
+
"vision_backbone.fused_featurizer.blocks.10.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
687 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
688 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
689 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
690 |
+
"vision_backbone.fused_featurizer.blocks.10.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
691 |
+
"vision_backbone.fused_featurizer.blocks.10.norm1.bias": "model-00001-of-00003.safetensors",
|
692 |
+
"vision_backbone.fused_featurizer.blocks.10.norm1.weight": "model-00001-of-00003.safetensors",
|
693 |
+
"vision_backbone.fused_featurizer.blocks.10.norm2.bias": "model-00001-of-00003.safetensors",
|
694 |
+
"vision_backbone.fused_featurizer.blocks.10.norm2.weight": "model-00001-of-00003.safetensors",
|
695 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.proj.bias": "model-00001-of-00003.safetensors",
|
696 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.proj.weight": "model-00001-of-00003.safetensors",
|
697 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
698 |
+
"vision_backbone.fused_featurizer.blocks.11.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
699 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
700 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
701 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
702 |
+
"vision_backbone.fused_featurizer.blocks.11.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
703 |
+
"vision_backbone.fused_featurizer.blocks.11.norm1.bias": "model-00001-of-00003.safetensors",
|
704 |
+
"vision_backbone.fused_featurizer.blocks.11.norm1.weight": "model-00001-of-00003.safetensors",
|
705 |
+
"vision_backbone.fused_featurizer.blocks.11.norm2.bias": "model-00001-of-00003.safetensors",
|
706 |
+
"vision_backbone.fused_featurizer.blocks.11.norm2.weight": "model-00001-of-00003.safetensors",
|
707 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.proj.bias": "model-00001-of-00003.safetensors",
|
708 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.proj.weight": "model-00001-of-00003.safetensors",
|
709 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
710 |
+
"vision_backbone.fused_featurizer.blocks.12.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
711 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
712 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
713 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
714 |
+
"vision_backbone.fused_featurizer.blocks.12.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
715 |
+
"vision_backbone.fused_featurizer.blocks.12.norm1.bias": "model-00001-of-00003.safetensors",
|
716 |
+
"vision_backbone.fused_featurizer.blocks.12.norm1.weight": "model-00001-of-00003.safetensors",
|
717 |
+
"vision_backbone.fused_featurizer.blocks.12.norm2.bias": "model-00001-of-00003.safetensors",
|
718 |
+
"vision_backbone.fused_featurizer.blocks.12.norm2.weight": "model-00001-of-00003.safetensors",
|
719 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.proj.bias": "model-00001-of-00003.safetensors",
|
720 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.proj.weight": "model-00001-of-00003.safetensors",
|
721 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
722 |
+
"vision_backbone.fused_featurizer.blocks.13.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
723 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
724 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
725 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
726 |
+
"vision_backbone.fused_featurizer.blocks.13.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
727 |
+
"vision_backbone.fused_featurizer.blocks.13.norm1.bias": "model-00001-of-00003.safetensors",
|
728 |
+
"vision_backbone.fused_featurizer.blocks.13.norm1.weight": "model-00001-of-00003.safetensors",
|
729 |
+
"vision_backbone.fused_featurizer.blocks.13.norm2.bias": "model-00001-of-00003.safetensors",
|
730 |
+
"vision_backbone.fused_featurizer.blocks.13.norm2.weight": "model-00001-of-00003.safetensors",
|
731 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.proj.bias": "model-00001-of-00003.safetensors",
|
732 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.proj.weight": "model-00001-of-00003.safetensors",
|
733 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
734 |
+
"vision_backbone.fused_featurizer.blocks.14.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
735 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
736 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
737 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
738 |
+
"vision_backbone.fused_featurizer.blocks.14.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
739 |
+
"vision_backbone.fused_featurizer.blocks.14.norm1.bias": "model-00001-of-00003.safetensors",
|
740 |
+
"vision_backbone.fused_featurizer.blocks.14.norm1.weight": "model-00001-of-00003.safetensors",
|
741 |
+
"vision_backbone.fused_featurizer.blocks.14.norm2.bias": "model-00001-of-00003.safetensors",
|
742 |
+
"vision_backbone.fused_featurizer.blocks.14.norm2.weight": "model-00001-of-00003.safetensors",
|
743 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.proj.bias": "model-00001-of-00003.safetensors",
|
744 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.proj.weight": "model-00001-of-00003.safetensors",
|
745 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
746 |
+
"vision_backbone.fused_featurizer.blocks.15.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
747 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
748 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
749 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
750 |
+
"vision_backbone.fused_featurizer.blocks.15.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
751 |
+
"vision_backbone.fused_featurizer.blocks.15.norm1.bias": "model-00001-of-00003.safetensors",
|
752 |
+
"vision_backbone.fused_featurizer.blocks.15.norm1.weight": "model-00001-of-00003.safetensors",
|
753 |
+
"vision_backbone.fused_featurizer.blocks.15.norm2.bias": "model-00001-of-00003.safetensors",
|
754 |
+
"vision_backbone.fused_featurizer.blocks.15.norm2.weight": "model-00001-of-00003.safetensors",
|
755 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.proj.bias": "model-00001-of-00003.safetensors",
|
756 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.proj.weight": "model-00001-of-00003.safetensors",
|
757 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
758 |
+
"vision_backbone.fused_featurizer.blocks.16.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
759 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
760 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
761 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
762 |
+
"vision_backbone.fused_featurizer.blocks.16.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
763 |
+
"vision_backbone.fused_featurizer.blocks.16.norm1.bias": "model-00001-of-00003.safetensors",
|
764 |
+
"vision_backbone.fused_featurizer.blocks.16.norm1.weight": "model-00001-of-00003.safetensors",
|
765 |
+
"vision_backbone.fused_featurizer.blocks.16.norm2.bias": "model-00001-of-00003.safetensors",
|
766 |
+
"vision_backbone.fused_featurizer.blocks.16.norm2.weight": "model-00001-of-00003.safetensors",
|
767 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.proj.bias": "model-00001-of-00003.safetensors",
|
768 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.proj.weight": "model-00001-of-00003.safetensors",
|
769 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
770 |
+
"vision_backbone.fused_featurizer.blocks.17.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
771 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
772 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
773 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
774 |
+
"vision_backbone.fused_featurizer.blocks.17.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
775 |
+
"vision_backbone.fused_featurizer.blocks.17.norm1.bias": "model-00001-of-00003.safetensors",
|
776 |
+
"vision_backbone.fused_featurizer.blocks.17.norm1.weight": "model-00001-of-00003.safetensors",
|
777 |
+
"vision_backbone.fused_featurizer.blocks.17.norm2.bias": "model-00001-of-00003.safetensors",
|
778 |
+
"vision_backbone.fused_featurizer.blocks.17.norm2.weight": "model-00001-of-00003.safetensors",
|
779 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.proj.bias": "model-00001-of-00003.safetensors",
|
780 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.proj.weight": "model-00001-of-00003.safetensors",
|
781 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
782 |
+
"vision_backbone.fused_featurizer.blocks.18.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
783 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
784 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
785 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
786 |
+
"vision_backbone.fused_featurizer.blocks.18.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
787 |
+
"vision_backbone.fused_featurizer.blocks.18.norm1.bias": "model-00001-of-00003.safetensors",
|
788 |
+
"vision_backbone.fused_featurizer.blocks.18.norm1.weight": "model-00001-of-00003.safetensors",
|
789 |
+
"vision_backbone.fused_featurizer.blocks.18.norm2.bias": "model-00001-of-00003.safetensors",
|
790 |
+
"vision_backbone.fused_featurizer.blocks.18.norm2.weight": "model-00001-of-00003.safetensors",
|
791 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.proj.bias": "model-00001-of-00003.safetensors",
|
792 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.proj.weight": "model-00001-of-00003.safetensors",
|
793 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
794 |
+
"vision_backbone.fused_featurizer.blocks.19.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
795 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
796 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
797 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
798 |
+
"vision_backbone.fused_featurizer.blocks.19.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
799 |
+
"vision_backbone.fused_featurizer.blocks.19.norm1.bias": "model-00001-of-00003.safetensors",
|
800 |
+
"vision_backbone.fused_featurizer.blocks.19.norm1.weight": "model-00001-of-00003.safetensors",
|
801 |
+
"vision_backbone.fused_featurizer.blocks.19.norm2.bias": "model-00001-of-00003.safetensors",
|
802 |
+
"vision_backbone.fused_featurizer.blocks.19.norm2.weight": "model-00001-of-00003.safetensors",
|
803 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.proj.bias": "model-00001-of-00003.safetensors",
|
804 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.proj.weight": "model-00001-of-00003.safetensors",
|
805 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
806 |
+
"vision_backbone.fused_featurizer.blocks.2.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
807 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
808 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
809 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
810 |
+
"vision_backbone.fused_featurizer.blocks.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
811 |
+
"vision_backbone.fused_featurizer.blocks.2.norm1.bias": "model-00001-of-00003.safetensors",
|
812 |
+
"vision_backbone.fused_featurizer.blocks.2.norm1.weight": "model-00001-of-00003.safetensors",
|
813 |
+
"vision_backbone.fused_featurizer.blocks.2.norm2.bias": "model-00001-of-00003.safetensors",
|
814 |
+
"vision_backbone.fused_featurizer.blocks.2.norm2.weight": "model-00001-of-00003.safetensors",
|
815 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.proj.bias": "model-00001-of-00003.safetensors",
|
816 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.proj.weight": "model-00001-of-00003.safetensors",
|
817 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
818 |
+
"vision_backbone.fused_featurizer.blocks.20.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
819 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
820 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
821 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
822 |
+
"vision_backbone.fused_featurizer.blocks.20.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
823 |
+
"vision_backbone.fused_featurizer.blocks.20.norm1.bias": "model-00001-of-00003.safetensors",
|
824 |
+
"vision_backbone.fused_featurizer.blocks.20.norm1.weight": "model-00001-of-00003.safetensors",
|
825 |
+
"vision_backbone.fused_featurizer.blocks.20.norm2.bias": "model-00001-of-00003.safetensors",
|
826 |
+
"vision_backbone.fused_featurizer.blocks.20.norm2.weight": "model-00001-of-00003.safetensors",
|
827 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.proj.bias": "model-00001-of-00003.safetensors",
|
828 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.proj.weight": "model-00001-of-00003.safetensors",
|
829 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
830 |
+
"vision_backbone.fused_featurizer.blocks.21.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
831 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
832 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
833 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
834 |
+
"vision_backbone.fused_featurizer.blocks.21.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
835 |
+
"vision_backbone.fused_featurizer.blocks.21.norm1.bias": "model-00001-of-00003.safetensors",
|
836 |
+
"vision_backbone.fused_featurizer.blocks.21.norm1.weight": "model-00001-of-00003.safetensors",
|
837 |
+
"vision_backbone.fused_featurizer.blocks.21.norm2.bias": "model-00001-of-00003.safetensors",
|
838 |
+
"vision_backbone.fused_featurizer.blocks.21.norm2.weight": "model-00001-of-00003.safetensors",
|
839 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.proj.bias": "model-00001-of-00003.safetensors",
|
840 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.proj.weight": "model-00001-of-00003.safetensors",
|
841 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
842 |
+
"vision_backbone.fused_featurizer.blocks.22.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
843 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
844 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
845 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
846 |
+
"vision_backbone.fused_featurizer.blocks.22.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
847 |
+
"vision_backbone.fused_featurizer.blocks.22.norm1.bias": "model-00001-of-00003.safetensors",
|
848 |
+
"vision_backbone.fused_featurizer.blocks.22.norm1.weight": "model-00001-of-00003.safetensors",
|
849 |
+
"vision_backbone.fused_featurizer.blocks.22.norm2.bias": "model-00001-of-00003.safetensors",
|
850 |
+
"vision_backbone.fused_featurizer.blocks.22.norm2.weight": "model-00001-of-00003.safetensors",
|
851 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.proj.bias": "model-00001-of-00003.safetensors",
|
852 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.proj.weight": "model-00001-of-00003.safetensors",
|
853 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
854 |
+
"vision_backbone.fused_featurizer.blocks.23.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
855 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
856 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
857 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
858 |
+
"vision_backbone.fused_featurizer.blocks.23.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
859 |
+
"vision_backbone.fused_featurizer.blocks.23.norm1.bias": "model-00001-of-00003.safetensors",
|
860 |
+
"vision_backbone.fused_featurizer.blocks.23.norm1.weight": "model-00001-of-00003.safetensors",
|
861 |
+
"vision_backbone.fused_featurizer.blocks.23.norm2.bias": "model-00001-of-00003.safetensors",
|
862 |
+
"vision_backbone.fused_featurizer.blocks.23.norm2.weight": "model-00001-of-00003.safetensors",
|
863 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.proj.bias": "model-00001-of-00003.safetensors",
|
864 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.proj.weight": "model-00001-of-00003.safetensors",
|
865 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
866 |
+
"vision_backbone.fused_featurizer.blocks.24.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
867 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
868 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
869 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
870 |
+
"vision_backbone.fused_featurizer.blocks.24.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
871 |
+
"vision_backbone.fused_featurizer.blocks.24.norm1.bias": "model-00001-of-00003.safetensors",
|
872 |
+
"vision_backbone.fused_featurizer.blocks.24.norm1.weight": "model-00001-of-00003.safetensors",
|
873 |
+
"vision_backbone.fused_featurizer.blocks.24.norm2.bias": "model-00001-of-00003.safetensors",
|
874 |
+
"vision_backbone.fused_featurizer.blocks.24.norm2.weight": "model-00001-of-00003.safetensors",
|
875 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.proj.bias": "model-00001-of-00003.safetensors",
|
876 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.proj.weight": "model-00001-of-00003.safetensors",
|
877 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
878 |
+
"vision_backbone.fused_featurizer.blocks.25.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
879 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
880 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
881 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
882 |
+
"vision_backbone.fused_featurizer.blocks.25.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
883 |
+
"vision_backbone.fused_featurizer.blocks.25.norm1.bias": "model-00001-of-00003.safetensors",
|
884 |
+
"vision_backbone.fused_featurizer.blocks.25.norm1.weight": "model-00001-of-00003.safetensors",
|
885 |
+
"vision_backbone.fused_featurizer.blocks.25.norm2.bias": "model-00001-of-00003.safetensors",
|
886 |
+
"vision_backbone.fused_featurizer.blocks.25.norm2.weight": "model-00001-of-00003.safetensors",
|
887 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.proj.bias": "model-00001-of-00003.safetensors",
|
888 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.proj.weight": "model-00001-of-00003.safetensors",
|
889 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
890 |
+
"vision_backbone.fused_featurizer.blocks.26.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
891 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
892 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
893 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
894 |
+
"vision_backbone.fused_featurizer.blocks.26.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
895 |
+
"vision_backbone.fused_featurizer.blocks.26.norm1.bias": "model-00001-of-00003.safetensors",
|
896 |
+
"vision_backbone.fused_featurizer.blocks.26.norm1.weight": "model-00001-of-00003.safetensors",
|
897 |
+
"vision_backbone.fused_featurizer.blocks.26.norm2.bias": "model-00001-of-00003.safetensors",
|
898 |
+
"vision_backbone.fused_featurizer.blocks.26.norm2.weight": "model-00001-of-00003.safetensors",
|
899 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.proj.bias": "model-00001-of-00003.safetensors",
|
900 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.proj.weight": "model-00001-of-00003.safetensors",
|
901 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
902 |
+
"vision_backbone.fused_featurizer.blocks.3.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
903 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
904 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
905 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
906 |
+
"vision_backbone.fused_featurizer.blocks.3.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
907 |
+
"vision_backbone.fused_featurizer.blocks.3.norm1.bias": "model-00001-of-00003.safetensors",
|
908 |
+
"vision_backbone.fused_featurizer.blocks.3.norm1.weight": "model-00001-of-00003.safetensors",
|
909 |
+
"vision_backbone.fused_featurizer.blocks.3.norm2.bias": "model-00001-of-00003.safetensors",
|
910 |
+
"vision_backbone.fused_featurizer.blocks.3.norm2.weight": "model-00001-of-00003.safetensors",
|
911 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.proj.bias": "model-00001-of-00003.safetensors",
|
912 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.proj.weight": "model-00001-of-00003.safetensors",
|
913 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
914 |
+
"vision_backbone.fused_featurizer.blocks.4.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
915 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
916 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
917 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
918 |
+
"vision_backbone.fused_featurizer.blocks.4.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
919 |
+
"vision_backbone.fused_featurizer.blocks.4.norm1.bias": "model-00001-of-00003.safetensors",
|
920 |
+
"vision_backbone.fused_featurizer.blocks.4.norm1.weight": "model-00001-of-00003.safetensors",
|
921 |
+
"vision_backbone.fused_featurizer.blocks.4.norm2.bias": "model-00001-of-00003.safetensors",
|
922 |
+
"vision_backbone.fused_featurizer.blocks.4.norm2.weight": "model-00001-of-00003.safetensors",
|
923 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.proj.bias": "model-00001-of-00003.safetensors",
|
924 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.proj.weight": "model-00001-of-00003.safetensors",
|
925 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
926 |
+
"vision_backbone.fused_featurizer.blocks.5.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
927 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
928 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
929 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
930 |
+
"vision_backbone.fused_featurizer.blocks.5.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
931 |
+
"vision_backbone.fused_featurizer.blocks.5.norm1.bias": "model-00001-of-00003.safetensors",
|
932 |
+
"vision_backbone.fused_featurizer.blocks.5.norm1.weight": "model-00001-of-00003.safetensors",
|
933 |
+
"vision_backbone.fused_featurizer.blocks.5.norm2.bias": "model-00001-of-00003.safetensors",
|
934 |
+
"vision_backbone.fused_featurizer.blocks.5.norm2.weight": "model-00001-of-00003.safetensors",
|
935 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.proj.bias": "model-00001-of-00003.safetensors",
|
936 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.proj.weight": "model-00001-of-00003.safetensors",
|
937 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
938 |
+
"vision_backbone.fused_featurizer.blocks.6.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
939 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
940 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
941 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
942 |
+
"vision_backbone.fused_featurizer.blocks.6.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
943 |
+
"vision_backbone.fused_featurizer.blocks.6.norm1.bias": "model-00001-of-00003.safetensors",
|
944 |
+
"vision_backbone.fused_featurizer.blocks.6.norm1.weight": "model-00001-of-00003.safetensors",
|
945 |
+
"vision_backbone.fused_featurizer.blocks.6.norm2.bias": "model-00001-of-00003.safetensors",
|
946 |
+
"vision_backbone.fused_featurizer.blocks.6.norm2.weight": "model-00001-of-00003.safetensors",
|
947 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.proj.bias": "model-00001-of-00003.safetensors",
|
948 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.proj.weight": "model-00001-of-00003.safetensors",
|
949 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
950 |
+
"vision_backbone.fused_featurizer.blocks.7.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
951 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
952 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
953 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
954 |
+
"vision_backbone.fused_featurizer.blocks.7.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
955 |
+
"vision_backbone.fused_featurizer.blocks.7.norm1.bias": "model-00001-of-00003.safetensors",
|
956 |
+
"vision_backbone.fused_featurizer.blocks.7.norm1.weight": "model-00001-of-00003.safetensors",
|
957 |
+
"vision_backbone.fused_featurizer.blocks.7.norm2.bias": "model-00001-of-00003.safetensors",
|
958 |
+
"vision_backbone.fused_featurizer.blocks.7.norm2.weight": "model-00001-of-00003.safetensors",
|
959 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.proj.bias": "model-00001-of-00003.safetensors",
|
960 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.proj.weight": "model-00001-of-00003.safetensors",
|
961 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
962 |
+
"vision_backbone.fused_featurizer.blocks.8.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
963 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
964 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
965 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
966 |
+
"vision_backbone.fused_featurizer.blocks.8.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
967 |
+
"vision_backbone.fused_featurizer.blocks.8.norm1.bias": "model-00001-of-00003.safetensors",
|
968 |
+
"vision_backbone.fused_featurizer.blocks.8.norm1.weight": "model-00001-of-00003.safetensors",
|
969 |
+
"vision_backbone.fused_featurizer.blocks.8.norm2.bias": "model-00001-of-00003.safetensors",
|
970 |
+
"vision_backbone.fused_featurizer.blocks.8.norm2.weight": "model-00001-of-00003.safetensors",
|
971 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.proj.bias": "model-00001-of-00003.safetensors",
|
972 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.proj.weight": "model-00001-of-00003.safetensors",
|
973 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.qkv.bias": "model-00001-of-00003.safetensors",
|
974 |
+
"vision_backbone.fused_featurizer.blocks.9.attn.qkv.weight": "model-00001-of-00003.safetensors",
|
975 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc1.bias": "model-00001-of-00003.safetensors",
|
976 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
977 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc2.bias": "model-00001-of-00003.safetensors",
|
978 |
+
"vision_backbone.fused_featurizer.blocks.9.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
979 |
+
"vision_backbone.fused_featurizer.blocks.9.norm1.bias": "model-00001-of-00003.safetensors",
|
980 |
+
"vision_backbone.fused_featurizer.blocks.9.norm1.weight": "model-00001-of-00003.safetensors",
|
981 |
+
"vision_backbone.fused_featurizer.blocks.9.norm2.bias": "model-00001-of-00003.safetensors",
|
982 |
+
"vision_backbone.fused_featurizer.blocks.9.norm2.weight": "model-00001-of-00003.safetensors",
|
983 |
+
"vision_backbone.fused_featurizer.norm.bias": "model-00001-of-00003.safetensors",
|
984 |
+
"vision_backbone.fused_featurizer.norm.weight": "model-00001-of-00003.safetensors",
|
985 |
+
"vision_backbone.fused_featurizer.patch_embed.proj.bias": "model-00001-of-00003.safetensors",
|
986 |
+
"vision_backbone.fused_featurizer.patch_embed.proj.weight": "model-00001-of-00003.safetensors",
|
987 |
+
"vision_backbone.fused_featurizer.pos_embed": "model-00001-of-00003.safetensors"
|
988 |
+
}
|
989 |
+
}
|
modeling_prismatic.py
ADDED
@@ -0,0 +1,577 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modeling_prismatic.py
|
3 |
+
|
4 |
+
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
|
5 |
+
from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
|
6 |
+
logic in `prismatic.models.vlms.prismatic.py`.
|
7 |
+
|
8 |
+
Note =>> for the time being, not adding the custom HF "docstring" formatting.
|
9 |
+
|
10 |
+
References [LLaVa, IDEFICS-2]:
|
11 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
|
12 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
|
13 |
+
"""
|
14 |
+
|
15 |
+
import logging
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from functools import partial
|
18 |
+
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import timm
|
22 |
+
import tokenizers
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
import transformers
|
26 |
+
from timm.models.vision_transformer import LayerScale
|
27 |
+
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
28 |
+
from transformers.modeling_outputs import ModelOutput
|
29 |
+
|
30 |
+
from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
|
31 |
+
|
32 |
+
# Get Logger
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
# === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
|
37 |
+
IGNORE_INDEX = -100
|
38 |
+
|
39 |
+
|
40 |
+
# === Utility Functions for Monkey-Patching ===
|
41 |
+
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
|
42 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
43 |
+
result = fn(*args, **kwargs)
|
44 |
+
return result[0] if isinstance(result, tuple) else result
|
45 |
+
|
46 |
+
return wrapper
|
47 |
+
|
48 |
+
|
49 |
+
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
|
50 |
+
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
|
51 |
+
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
|
52 |
+
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
|
54 |
+
|
55 |
+
|
56 |
+
def ls_apply_patch(ls_module: LayerScale):
|
57 |
+
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
|
58 |
+
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
|
59 |
+
del ls_module.gamma
|
60 |
+
|
61 |
+
|
62 |
+
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
|
63 |
+
class PrismaticVisionBackbone(nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
use_fused_vision_backbone: bool,
|
67 |
+
image_sizes: List[int],
|
68 |
+
timm_model_ids: List[str],
|
69 |
+
timm_override_act_layers: List[Optional[str]],
|
70 |
+
) -> None:
|
71 |
+
super().__init__()
|
72 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
73 |
+
|
74 |
+
# [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
|
75 |
+
# =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
|
76 |
+
# Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
|
77 |
+
assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
|
78 |
+
self.featurizer = timm.create_model(
|
79 |
+
timm_model_ids[0],
|
80 |
+
pretrained=False,
|
81 |
+
num_classes=0,
|
82 |
+
img_size=image_sizes[0],
|
83 |
+
act_layer=timm_override_act_layers[0],
|
84 |
+
)
|
85 |
+
self.featurizer.forward = unpack_tuple(
|
86 |
+
partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
|
87 |
+
)
|
88 |
+
self.embed_dim = self.featurizer.embed_dim
|
89 |
+
|
90 |
+
# If `use_fused_vision_backbone` =>> create "beta" featurizer
|
91 |
+
if self.use_fused_vision_backbone:
|
92 |
+
self.fused_featurizer = timm.create_model(
|
93 |
+
timm_model_ids[1],
|
94 |
+
pretrained=False,
|
95 |
+
num_classes=0,
|
96 |
+
img_size=image_sizes[1],
|
97 |
+
act_layer=timm_override_act_layers[1],
|
98 |
+
)
|
99 |
+
self.fused_featurizer.forward = unpack_tuple(
|
100 |
+
partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
|
101 |
+
)
|
102 |
+
self.embed_dim += self.fused_featurizer.embed_dim
|
103 |
+
|
104 |
+
# Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
|
105 |
+
for module in self.featurizer.modules():
|
106 |
+
if isinstance(module, LayerScale):
|
107 |
+
ls_apply_patch(module)
|
108 |
+
|
109 |
+
if self.use_fused_vision_backbone:
|
110 |
+
for module in self.fused_featurizer.modules():
|
111 |
+
if isinstance(module, LayerScale):
|
112 |
+
ls_apply_patch(module)
|
113 |
+
|
114 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
115 |
+
"""Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
|
116 |
+
if not self.use_fused_vision_backbone:
|
117 |
+
return self.featurizer(pixel_values)
|
118 |
+
|
119 |
+
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
|
120 |
+
img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
|
121 |
+
patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
|
122 |
+
|
123 |
+
return torch.cat([patches, patches_fused], dim=2)
|
124 |
+
|
125 |
+
|
126 |
+
# === Prismatic Projector (nn.Module) Definitions ===
|
127 |
+
class PrismaticProjector(nn.Module):
|
128 |
+
def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
|
129 |
+
super().__init__()
|
130 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
131 |
+
self.vision_dim, self.llm_dim = vision_dim, llm_dim
|
132 |
+
|
133 |
+
# Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
|
134 |
+
if not self.use_fused_vision_backbone:
|
135 |
+
self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
|
136 |
+
self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
137 |
+
self.act_fn1 = nn.GELU()
|
138 |
+
else:
|
139 |
+
initial_projection_dim = 4 * vision_dim
|
140 |
+
self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
|
141 |
+
self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
|
142 |
+
self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
143 |
+
self.act_fn1 = nn.GELU()
|
144 |
+
self.act_fn2 = nn.GELU()
|
145 |
+
|
146 |
+
def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
|
147 |
+
if not self.use_fused_vision_backbone:
|
148 |
+
projected_features = self.fc1(img_patches)
|
149 |
+
projected_features = self.act_fn1(projected_features)
|
150 |
+
projected_features = self.fc2(projected_features)
|
151 |
+
else:
|
152 |
+
projected_features = self.fc1(img_patches)
|
153 |
+
projected_features = self.act_fn1(projected_features)
|
154 |
+
projected_features = self.fc2(projected_features)
|
155 |
+
projected_features = self.act_fn2(projected_features)
|
156 |
+
projected_features = self.fc3(projected_features)
|
157 |
+
|
158 |
+
return projected_features
|
159 |
+
|
160 |
+
|
161 |
+
# === Main HF Class Definitions ===
|
162 |
+
@dataclass
|
163 |
+
class PrismaticCausalLMOutputWithPast(ModelOutput):
|
164 |
+
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
|
165 |
+
|
166 |
+
loss: Optional[torch.FloatTensor] = None
|
167 |
+
logits: torch.FloatTensor = None
|
168 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
169 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
170 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
171 |
+
|
172 |
+
# Additions for VLMs
|
173 |
+
projector_features: Optional[torch.FloatTensor] = None
|
174 |
+
|
175 |
+
|
176 |
+
class PrismaticPreTrainedModel(PreTrainedModel):
|
177 |
+
config_class: PretrainedConfig = PrismaticConfig
|
178 |
+
base_model_prefix: str = "model"
|
179 |
+
supports_gradient_checkpointing: bool = True
|
180 |
+
|
181 |
+
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
|
182 |
+
_skip_keys_device_placement: str = "past_key_values"
|
183 |
+
_supports_flash_attn_2: bool = True
|
184 |
+
|
185 |
+
def _init_weights(self, module: nn.Module) -> None:
|
186 |
+
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
|
187 |
+
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
|
188 |
+
# https://github.com/TRI-ML/prismatic-vlms
|
189 |
+
std = (
|
190 |
+
self.config.initializer_range
|
191 |
+
if hasattr(self.config, "initializer_range")
|
192 |
+
else self.config.text_config.initializer_range
|
193 |
+
)
|
194 |
+
|
195 |
+
if hasattr(module, "class_embedding"):
|
196 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
197 |
+
|
198 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
199 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
200 |
+
if module.bias is not None:
|
201 |
+
module.bias.data.zero_()
|
202 |
+
elif isinstance(module, nn.Embedding):
|
203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
204 |
+
if module.padding_idx is not None:
|
205 |
+
module.weight.data[module.padding_idx].zero_()
|
206 |
+
|
207 |
+
@property
|
208 |
+
def _supports_sdpa(self) -> bool:
|
209 |
+
"""Check LLM supports SDPA Attention"""
|
210 |
+
return self.language_model._supports_sdpa
|
211 |
+
|
212 |
+
|
213 |
+
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
|
214 |
+
def __init__(self, config: PrismaticConfig) -> None:
|
215 |
+
super().__init__(config)
|
216 |
+
|
217 |
+
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
|
218 |
+
if config.use_fused_vision_backbone is None:
|
219 |
+
raise ValueError("Missing config field `use_fused_vision_backbone`")
|
220 |
+
|
221 |
+
if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
|
222 |
+
raise NotImplementedError(
|
223 |
+
"TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
|
224 |
+
"if you urgently need support for latest TIMM versions."
|
225 |
+
)
|
226 |
+
|
227 |
+
if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
|
228 |
+
logger.warning(
|
229 |
+
f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
|
230 |
+
f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
|
231 |
+
f"there might be inference-time regressions due to dependency changes. If in doubt, please"
|
232 |
+
f"use the above versions."
|
233 |
+
)
|
234 |
+
|
235 |
+
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
|
236 |
+
self.vision_backbone = PrismaticVisionBackbone(
|
237 |
+
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
|
238 |
+
)
|
239 |
+
|
240 |
+
# Create Multimodal Projector
|
241 |
+
self.projector = PrismaticProjector(
|
242 |
+
config.use_fused_vision_backbone,
|
243 |
+
vision_dim=self.vision_backbone.embed_dim,
|
244 |
+
llm_dim=config.text_config.hidden_size,
|
245 |
+
)
|
246 |
+
|
247 |
+
# Instantiate LLM Backbone
|
248 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
249 |
+
config.text_config, attn_implementation=config._attn_implementation
|
250 |
+
)
|
251 |
+
self.vocab_size = config.text_config.vocab_size
|
252 |
+
self.pad_token_id = config.pad_token_id
|
253 |
+
|
254 |
+
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
|
255 |
+
self.post_init()
|
256 |
+
|
257 |
+
# === `PreTrainedModel` Boilerplate ===
|
258 |
+
def get_input_embeddings(self) -> nn.Module:
|
259 |
+
return self.language_model.get_input_embeddings()
|
260 |
+
|
261 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
262 |
+
self.language_model.set_input_embeddings(value)
|
263 |
+
|
264 |
+
def get_output_embeddings(self) -> nn.Module:
|
265 |
+
return self.language_model.get_output_embeddings()
|
266 |
+
|
267 |
+
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
268 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
269 |
+
|
270 |
+
def get_decoder(self) -> nn.Module:
|
271 |
+
return self.language_model.get_decoder()
|
272 |
+
|
273 |
+
def set_decoder(self, decoder: nn.Module) -> None:
|
274 |
+
self.language_model.set_decoder(decoder)
|
275 |
+
|
276 |
+
def tie_weights(self) -> None:
|
277 |
+
self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
|
278 |
+
|
279 |
+
def resize_token_embeddings(
|
280 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
281 |
+
) -> nn.Embedding:
|
282 |
+
updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
283 |
+
|
284 |
+
# Update config/instance variables
|
285 |
+
self.config.text_config.vocab_size = updated_embeddings.num_embeddings
|
286 |
+
self.vocab_size = updated_embeddings.num_embeddings
|
287 |
+
|
288 |
+
return updated_embeddings
|
289 |
+
|
290 |
+
# === Core Prismatic VLM `forward()` Logic ===
|
291 |
+
def forward(
|
292 |
+
self,
|
293 |
+
input_ids: Optional[torch.LongTensor] = None,
|
294 |
+
attention_mask: Optional[torch.Tensor] = None,
|
295 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
296 |
+
labels: Optional[torch.LongTensor] = None,
|
297 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
298 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
299 |
+
use_cache: Optional[bool] = None,
|
300 |
+
output_attentions: Optional[bool] = None,
|
301 |
+
output_hidden_states: Optional[bool] = None,
|
302 |
+
output_projector_features: Optional[bool] = None,
|
303 |
+
return_dict: Optional[bool] = None,
|
304 |
+
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
|
305 |
+
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
|
306 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
307 |
+
output_hidden_states = (
|
308 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
309 |
+
)
|
310 |
+
output_projector_features = output_projector_features if output_projector_features is not None else False
|
311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
312 |
+
|
313 |
+
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
|
314 |
+
use_cache = use_cache and not self.training
|
315 |
+
|
316 |
+
# Instantiate Placeholder for Projector Features
|
317 |
+
projected_patch_embeddings = None
|
318 |
+
|
319 |
+
# Note :: We only support forward passes with the following cases:
|
320 |
+
# => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
|
321 |
+
# => Unimodal Forward :: (pixel_values is None)
|
322 |
+
# => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
|
323 |
+
|
324 |
+
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
|
325 |
+
if input_ids.shape[1] == 1:
|
326 |
+
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
|
327 |
+
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
|
328 |
+
assert labels is None, "Unexpected key `labels` provided during cached generation!"
|
329 |
+
|
330 |
+
language_model_output = self.language_model(
|
331 |
+
input_ids=input_ids,
|
332 |
+
attention_mask=None,
|
333 |
+
position_ids=None,
|
334 |
+
past_key_values=past_key_values,
|
335 |
+
inputs_embeds=None,
|
336 |
+
labels=None,
|
337 |
+
use_cache=use_cache,
|
338 |
+
output_attentions=output_attentions,
|
339 |
+
output_hidden_states=output_hidden_states,
|
340 |
+
return_dict=return_dict,
|
341 |
+
)
|
342 |
+
|
343 |
+
# === Handle Unimodal Forward ===
|
344 |
+
elif pixel_values is None:
|
345 |
+
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
|
346 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
347 |
+
|
348 |
+
language_model_output = self.language_model(
|
349 |
+
input_ids=input_ids,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
position_ids=None,
|
352 |
+
past_key_values=None,
|
353 |
+
inputs_embeds=None,
|
354 |
+
labels=labels,
|
355 |
+
use_cache=use_cache,
|
356 |
+
output_attentions=output_attentions,
|
357 |
+
output_hidden_states=output_hidden_states,
|
358 |
+
return_dict=return_dict,
|
359 |
+
)
|
360 |
+
|
361 |
+
# === Handle Multimodal Forward ===
|
362 |
+
elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
|
363 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
364 |
+
|
365 |
+
# Visual Feature Extraction
|
366 |
+
patch_features = self.vision_backbone(pixel_values)
|
367 |
+
|
368 |
+
# Projection Logic =>> Update Attention Mask
|
369 |
+
projected_patch_embeddings = self.projector(patch_features)
|
370 |
+
projected_patch_attention_mask = None
|
371 |
+
if attention_mask is not None:
|
372 |
+
projected_patch_attention_mask = torch.full(
|
373 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
374 |
+
fill_value=True,
|
375 |
+
dtype=attention_mask.dtype,
|
376 |
+
device=attention_mask.device,
|
377 |
+
)
|
378 |
+
|
379 |
+
# Get Input Embeddings (from Language Model Embeddings)
|
380 |
+
input_embeddings = self.get_input_embeddings()(input_ids)
|
381 |
+
|
382 |
+
# Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
|
383 |
+
multimodal_embeddings = torch.cat(
|
384 |
+
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
|
385 |
+
)
|
386 |
+
multimodal_attention_mask = None
|
387 |
+
if attention_mask is not None:
|
388 |
+
multimodal_attention_mask = torch.cat(
|
389 |
+
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
|
390 |
+
)
|
391 |
+
|
392 |
+
# Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
|
393 |
+
multimodal_labels = None
|
394 |
+
if labels is not None:
|
395 |
+
projected_patch_labels = torch.full(
|
396 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
397 |
+
fill_value=IGNORE_INDEX,
|
398 |
+
dtype=labels.dtype,
|
399 |
+
device=labels.device,
|
400 |
+
)
|
401 |
+
multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
|
402 |
+
|
403 |
+
# Dispatch to Language Model
|
404 |
+
language_model_output = self.language_model(
|
405 |
+
input_ids=None,
|
406 |
+
attention_mask=multimodal_attention_mask,
|
407 |
+
position_ids=None,
|
408 |
+
past_key_values=None,
|
409 |
+
inputs_embeds=multimodal_embeddings,
|
410 |
+
labels=multimodal_labels,
|
411 |
+
use_cache=use_cache,
|
412 |
+
output_attentions=output_attentions,
|
413 |
+
output_hidden_states=output_hidden_states,
|
414 |
+
return_dict=return_dict,
|
415 |
+
)
|
416 |
+
|
417 |
+
# === Otherwise =>> Assume Invalid! ===
|
418 |
+
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
|
419 |
+
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
|
420 |
+
|
421 |
+
else:
|
422 |
+
raise ValueError(
|
423 |
+
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
|
424 |
+
f"=> `input_ids` = {input_ids is not None}\n"
|
425 |
+
f"=> `attention_mask` = {attention_mask is not None}\n"
|
426 |
+
f"=> `pixel_values` = {pixel_values is not None}\n"
|
427 |
+
f"=> `labels` = {labels is not None}\n"
|
428 |
+
f"=> `input_embeds` = {inputs_embeds is not None}\n"
|
429 |
+
f"=> `past_key_values` = {past_key_values is not None}\n"
|
430 |
+
f"=> `use_cache` = {use_cache}"
|
431 |
+
)
|
432 |
+
|
433 |
+
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
|
434 |
+
if not return_dict:
|
435 |
+
if output_projector_features and (projected_patch_embeddings is not None):
|
436 |
+
return *language_model_output, projected_patch_embeddings
|
437 |
+
|
438 |
+
return language_model_output
|
439 |
+
|
440 |
+
return PrismaticCausalLMOutputWithPast(
|
441 |
+
loss=language_model_output.loss,
|
442 |
+
logits=language_model_output.logits,
|
443 |
+
past_key_values=language_model_output.past_key_values,
|
444 |
+
hidden_states=language_model_output.hidden_states,
|
445 |
+
attentions=language_model_output.attentions,
|
446 |
+
projector_features=projected_patch_embeddings,
|
447 |
+
)
|
448 |
+
|
449 |
+
# === GenerationMixin Methods ===
|
450 |
+
def prepare_inputs_for_generation(
|
451 |
+
self,
|
452 |
+
input_ids: Optional[torch.Tensor] = None,
|
453 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
454 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
455 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
456 |
+
attention_mask: Optional[torch.Tensor] = None,
|
457 |
+
**kwargs: str,
|
458 |
+
) -> Dict[str, torch.Tensor]:
|
459 |
+
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
|
460 |
+
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
|
461 |
+
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
|
462 |
+
):
|
463 |
+
raise ValueError("Generation with batch size > 1 is not currently supported!")
|
464 |
+
|
465 |
+
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
|
466 |
+
if past_key_values is not None:
|
467 |
+
input_ids = input_ids[:, -1:]
|
468 |
+
|
469 |
+
# If `input_embeds` are passed, we only want to use them in the 1st generation step
|
470 |
+
if inputs_embeds is not None and past_key_values is None:
|
471 |
+
model_inputs = {"input_embeds": inputs_embeds}
|
472 |
+
else:
|
473 |
+
model_inputs = {"input_ids": input_ids}
|
474 |
+
|
475 |
+
# Make sure `pixel_values` are preserved in `model_inputs`
|
476 |
+
model_inputs.update(
|
477 |
+
{
|
478 |
+
"attention_mask": attention_mask,
|
479 |
+
"pixel_values": pixel_values,
|
480 |
+
"past_key_values": past_key_values,
|
481 |
+
"use_cache": kwargs.get("use_cache"),
|
482 |
+
}
|
483 |
+
)
|
484 |
+
|
485 |
+
return model_inputs
|
486 |
+
|
487 |
+
# Defer to Language Model (all handle this differently, with different return types)
|
488 |
+
def _reorder_cache(self, *args, **kwargs) -> Any:
|
489 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
490 |
+
|
491 |
+
|
492 |
+
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
|
493 |
+
config_class: PretrainedConfig = OpenVLAConfig
|
494 |
+
|
495 |
+
def __init__(self, config: OpenVLAConfig) -> None:
|
496 |
+
super().__init__(config)
|
497 |
+
self.norm_stats = config.norm_stats
|
498 |
+
|
499 |
+
# Compute action bins
|
500 |
+
self.bins = np.linspace(-1, 1, config.n_action_bins)
|
501 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
502 |
+
|
503 |
+
# Compute vocab size for de-tokenization -- revert added "multiple of"
|
504 |
+
self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
|
505 |
+
|
506 |
+
def predict_action(
|
507 |
+
self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs: str
|
508 |
+
) -> np.ndarray:
|
509 |
+
"""Thin wrapper around super().generate() that decodes predicted actions and de-normalizes them."""
|
510 |
+
|
511 |
+
# We need to add this special empty token ('') after the colon (':') token in "ASSISTANT:"
|
512 |
+
# in order for the predictions to match the training configuration and be accurate.
|
513 |
+
input_ids = torch.cat(
|
514 |
+
(input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
|
515 |
+
)
|
516 |
+
|
517 |
+
if isinstance(unnorm_key, str):
|
518 |
+
if unnorm_key == 'normalized':
|
519 |
+
unnorm_key = None
|
520 |
+
else:
|
521 |
+
action_norm_stats = self.get_action_stats(unnorm_key)
|
522 |
+
elif isinstance(unnorm_key, dict):
|
523 |
+
action_norm_stats = unnorm_key
|
524 |
+
|
525 |
+
num_actions = len(action_norm_stats["q01"]) if unnorm_key else 7
|
526 |
+
|
527 |
+
# Run VLA inference
|
528 |
+
generated_ids = self.generate(input_ids, max_new_tokens=num_actions, **kwargs)
|
529 |
+
|
530 |
+
# Extract predicted action tokens and translate into (normalized) continuous actions
|
531 |
+
predicted_action_token_ids = generated_ids[0, -num_actions :].cpu().numpy()
|
532 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
533 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
534 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
535 |
+
|
536 |
+
if not unnorm_key:
|
537 |
+
return normalized_actions
|
538 |
+
|
539 |
+
# Unnormalize actions
|
540 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
|
541 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
542 |
+
actions = np.where(
|
543 |
+
mask,
|
544 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
|
545 |
+
normalized_actions,
|
546 |
+
)
|
547 |
+
|
548 |
+
return actions
|
549 |
+
|
550 |
+
@staticmethod
|
551 |
+
def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
|
552 |
+
if unnorm_key is None and len(norm_stats) != 1:
|
553 |
+
raise ValueError(
|
554 |
+
f"Your model was trained on more than one dataset. "
|
555 |
+
f"Please pass a `unnorm_key` from the following options to choose the statistics used for "
|
556 |
+
f"de-normalizing actions: {norm_stats.keys()}"
|
557 |
+
)
|
558 |
+
|
559 |
+
# If None, grab the (singular) dataset in `norm_stats` to use as `unnorm_key`
|
560 |
+
unnorm_key = unnorm_key if unnorm_key is not None else next(iter(norm_stats.keys()))
|
561 |
+
if unnorm_key not in norm_stats:
|
562 |
+
raise ValueError(
|
563 |
+
f"The `unnorm_key` you chose ({unnorm_key = }) is not in the available statistics. "
|
564 |
+
f"Please choose from: {norm_stats.keys()}"
|
565 |
+
)
|
566 |
+
|
567 |
+
return unnorm_key
|
568 |
+
|
569 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
570 |
+
"""Get the dimensionality of the policy's action space."""
|
571 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
572 |
+
return len(self.norm_stats[unnorm_key]["action"]["q01"])
|
573 |
+
|
574 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
575 |
+
"""Get all the logged statistics for the given dataset."""
|
576 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
577 |
+
return self.norm_stats[unnorm_key]["action"]
|
preprocessor_config.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "processing_prismatic.PrismaticImageProcessor",
|
4 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
5 |
+
},
|
6 |
+
"image_processor_type": "PrismaticImageProcessor",
|
7 |
+
"image_resize_strategy": "resize-naive",
|
8 |
+
"input_sizes": [
|
9 |
+
[
|
10 |
+
3,
|
11 |
+
224,
|
12 |
+
224
|
13 |
+
],
|
14 |
+
[
|
15 |
+
3,
|
16 |
+
224,
|
17 |
+
224
|
18 |
+
]
|
19 |
+
],
|
20 |
+
"interpolations": [
|
21 |
+
"bicubic",
|
22 |
+
"bicubic"
|
23 |
+
],
|
24 |
+
"means": [
|
25 |
+
[
|
26 |
+
0.485,
|
27 |
+
0.456,
|
28 |
+
0.406
|
29 |
+
],
|
30 |
+
[
|
31 |
+
0.5,
|
32 |
+
0.5,
|
33 |
+
0.5
|
34 |
+
]
|
35 |
+
],
|
36 |
+
"processor_class": "PrismaticProcessor",
|
37 |
+
"stds": [
|
38 |
+
[
|
39 |
+
0.229,
|
40 |
+
0.224,
|
41 |
+
0.225
|
42 |
+
],
|
43 |
+
[
|
44 |
+
0.5,
|
45 |
+
0.5,
|
46 |
+
0.5
|
47 |
+
]
|
48 |
+
],
|
49 |
+
"tvf_crop_params": [
|
50 |
+
{
|
51 |
+
"output_size": [
|
52 |
+
224,
|
53 |
+
224
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"output_size": [
|
58 |
+
224,
|
59 |
+
224
|
60 |
+
]
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"tvf_do_letterbox": false,
|
64 |
+
"tvf_letterbox_fill": null,
|
65 |
+
"tvf_normalize_params": [
|
66 |
+
{
|
67 |
+
"inplace": false,
|
68 |
+
"mean": [
|
69 |
+
0.484375,
|
70 |
+
0.455078125,
|
71 |
+
0.40625
|
72 |
+
],
|
73 |
+
"std": [
|
74 |
+
0.228515625,
|
75 |
+
0.2236328125,
|
76 |
+
0.224609375
|
77 |
+
]
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"inplace": false,
|
81 |
+
"mean": [
|
82 |
+
0.5,
|
83 |
+
0.5,
|
84 |
+
0.5
|
85 |
+
],
|
86 |
+
"std": [
|
87 |
+
0.5,
|
88 |
+
0.5,
|
89 |
+
0.5
|
90 |
+
]
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"tvf_resize_params": [
|
94 |
+
{
|
95 |
+
"antialias": true,
|
96 |
+
"interpolation": 3,
|
97 |
+
"max_size": null,
|
98 |
+
"size": [
|
99 |
+
224,
|
100 |
+
224
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"antialias": true,
|
105 |
+
"interpolation": 3,
|
106 |
+
"max_size": null,
|
107 |
+
"size": [
|
108 |
+
224,
|
109 |
+
224
|
110 |
+
]
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"use_fused_vision_backbone": true
|
114 |
+
}
|
processing_prismatic.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
processing_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
|
5 |
+
specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import timm.data
|
11 |
+
import torch
|
12 |
+
import torchvision.transforms.functional as TVF
|
13 |
+
from PIL import Image
|
14 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
15 |
+
from transformers import PreTrainedTokenizerBase
|
16 |
+
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
|
17 |
+
from transformers.processing_utils import ProcessorMixin
|
18 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
19 |
+
from transformers.utils import TensorType
|
20 |
+
|
21 |
+
|
22 |
+
# === Image Processing ===
|
23 |
+
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
|
24 |
+
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
|
25 |
+
(w, h), max_wh = image.size, max(image.size)
|
26 |
+
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
|
27 |
+
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
|
28 |
+
|
29 |
+
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
|
30 |
+
|
31 |
+
|
32 |
+
class PrismaticImageProcessor(ImageProcessingMixin):
|
33 |
+
model_input_names: ClassVar[List[str]] = ["pixel_values"]
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
use_fused_vision_backbone: bool = False,
|
38 |
+
image_resize_strategy: str = "letterbox",
|
39 |
+
input_sizes: Optional[List[Tuple[int, int, int]]] = None,
|
40 |
+
interpolations: Optional[List[str]] = None,
|
41 |
+
means: Optional[List[Tuple[float, float, float]]] = None,
|
42 |
+
stds: Optional[List[Tuple[float, float, float]]] = None,
|
43 |
+
**kwargs: str,
|
44 |
+
) -> None:
|
45 |
+
"""
|
46 |
+
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
|
47 |
+
created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
|
48 |
+
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
|
49 |
+
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
|
50 |
+
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
|
51 |
+
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
|
52 |
+
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
|
53 |
+
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
|
54 |
+
"""
|
55 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
56 |
+
self.image_resize_strategy = image_resize_strategy
|
57 |
+
|
58 |
+
# Handle `None` default values
|
59 |
+
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
|
60 |
+
means = [(0.5, 0.5, 0.5)] if means is None else means
|
61 |
+
stds = [(0.5, 0.5, 0.5)] if stds is None else stds
|
62 |
+
|
63 |
+
# TIMM `data_cfg` Parameters
|
64 |
+
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
|
65 |
+
|
66 |
+
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
|
67 |
+
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
|
68 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
69 |
+
|
70 |
+
for idx in range(len(input_sizes)):
|
71 |
+
transform = timm.data.create_transform(
|
72 |
+
input_size=self.input_sizes[idx],
|
73 |
+
interpolation=self.interpolations[idx],
|
74 |
+
mean=self.means[idx],
|
75 |
+
std=self.stds[idx],
|
76 |
+
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
|
77 |
+
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
|
78 |
+
is_training=False, # No image augmentations when loading the transform!
|
79 |
+
)
|
80 |
+
|
81 |
+
# [Validation] Ensure appropriate transform structure, expected sizes
|
82 |
+
if not (
|
83 |
+
isinstance(transform, Compose)
|
84 |
+
and (len(transform.transforms) == 4)
|
85 |
+
and isinstance(transform.transforms[0], Resize)
|
86 |
+
and isinstance(transform.transforms[1], CenterCrop)
|
87 |
+
and isinstance(transform.transforms[2], ToTensor)
|
88 |
+
and isinstance(transform.transforms[3], Normalize)
|
89 |
+
and (transform.transforms[0].size == self.input_sizes[idx][-1])
|
90 |
+
and (transform.transforms[1].size == self.input_sizes[idx][-2:])
|
91 |
+
):
|
92 |
+
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
|
93 |
+
|
94 |
+
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
|
95 |
+
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
|
96 |
+
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
|
97 |
+
self.tvf_resize_params.append(
|
98 |
+
{
|
99 |
+
"size": resize_t.size,
|
100 |
+
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
|
101 |
+
"max_size": None,
|
102 |
+
"antialias": True,
|
103 |
+
}
|
104 |
+
)
|
105 |
+
self.tvf_crop_params.append({"output_size": crop_t.size})
|
106 |
+
self.tvf_normalize_params.append(
|
107 |
+
{
|
108 |
+
"mean": norm_t.mean.float().numpy().tolist(),
|
109 |
+
"std": norm_t.std.float().numpy().tolist(),
|
110 |
+
"inplace": False,
|
111 |
+
}
|
112 |
+
)
|
113 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
114 |
+
|
115 |
+
# Handle Prismatic `image_resize_strategy`
|
116 |
+
if self.image_resize_strategy == "resize-naive":
|
117 |
+
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
|
118 |
+
elif self.image_resize_strategy == "letterbox":
|
119 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
|
120 |
+
elif self.image_resize_strategy == "resize-crop":
|
121 |
+
pass
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
|
124 |
+
|
125 |
+
# Dispatch **kwargs to super()
|
126 |
+
super().__init__(**kwargs)
|
127 |
+
|
128 |
+
def apply_transform(self, img: Image.Image) -> torch.Tensor:
|
129 |
+
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
|
130 |
+
if self.tvf_do_letterbox:
|
131 |
+
img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
|
132 |
+
|
133 |
+
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
|
134 |
+
imgs_t = []
|
135 |
+
for idx in range(len(self.input_sizes)):
|
136 |
+
img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
|
137 |
+
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
|
138 |
+
img_idx_t = TVF.to_tensor(img_idx)
|
139 |
+
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
|
140 |
+
imgs_t.append(img_idx_t)
|
141 |
+
|
142 |
+
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
|
143 |
+
img_t = torch.vstack(imgs_t)
|
144 |
+
|
145 |
+
return img_t
|
146 |
+
|
147 |
+
def preprocess(
|
148 |
+
self,
|
149 |
+
images: Union[Image.Image, List[Image.Image]],
|
150 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
151 |
+
**_: str,
|
152 |
+
) -> BatchFeature:
|
153 |
+
"""
|
154 |
+
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
|
155 |
+
explicitly only handle PIL.Image.Image instances for simplicity.
|
156 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
157 |
+
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
|
158 |
+
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
|
159 |
+
"""
|
160 |
+
if not isinstance(images, list):
|
161 |
+
images = [images]
|
162 |
+
|
163 |
+
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
|
164 |
+
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
|
165 |
+
|
166 |
+
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
|
167 |
+
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
|
168 |
+
|
169 |
+
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
|
170 |
+
return self.preprocess(images, **kwargs)
|
171 |
+
|
172 |
+
|
173 |
+
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
|
174 |
+
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
|
175 |
+
class PrismaticProcessor(ProcessorMixin):
|
176 |
+
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
|
177 |
+
image_processor_class: str = "AutoImageProcessor"
|
178 |
+
tokenizer_class: str = "AutoTokenizer"
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
image_processor: Optional[ImageProcessingMixin] = None,
|
183 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
184 |
+
) -> None:
|
185 |
+
super().__init__(image_processor, tokenizer)
|
186 |
+
|
187 |
+
def __call__(
|
188 |
+
self,
|
189 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
190 |
+
images: Union[Image.Image, List[Image.Image]],
|
191 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
192 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
193 |
+
max_length: Optional[int] = None,
|
194 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
195 |
+
) -> BatchFeature:
|
196 |
+
"""
|
197 |
+
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
|
198 |
+
forwards images to PrismaticImageProcessor.
|
199 |
+
@param text: The (batch) of text to encode; must be a string or list of strings.
|
200 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
201 |
+
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
|
202 |
+
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
|
203 |
+
@param max_length: Maximum length (in tokens) to truncate
|
204 |
+
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
|
205 |
+
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
|
206 |
+
"""
|
207 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
208 |
+
text_inputs = self.tokenizer(
|
209 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
210 |
+
)
|
211 |
+
|
212 |
+
# [Validate] Need same number of images and text inputs!
|
213 |
+
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
|
214 |
+
raise ValueError("Batch is malformed; expected same number of images and text inputs!")
|
215 |
+
|
216 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
217 |
+
|
218 |
+
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
|
219 |
+
def batch_decode(
|
220 |
+
self,
|
221 |
+
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
222 |
+
skip_special_tokens: bool = False,
|
223 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
224 |
+
**kwargs: str,
|
225 |
+
) -> List[str]:
|
226 |
+
return self.tokenizer.batch_decode(
|
227 |
+
sequences=sequences,
|
228 |
+
skip_special_tokens=skip_special_tokens,
|
229 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
230 |
+
**kwargs,
|
231 |
+
)
|
232 |
+
|
233 |
+
def decode(
|
234 |
+
self,
|
235 |
+
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
236 |
+
skip_special_tokens: bool = False,
|
237 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
238 |
+
**kwargs: str,
|
239 |
+
) -> str:
|
240 |
+
return self.tokenizer.decode(
|
241 |
+
token_ids=token_ids,
|
242 |
+
skip_special_tokens=skip_special_tokens,
|
243 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
244 |
+
**kwargs,
|
245 |
+
)
|
246 |
+
|
247 |
+
@property
|
248 |
+
def model_input_names(self) -> List[str]:
|
249 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
250 |
+
image_processor_input_names = self.image_processor.model_input_names
|
251 |
+
|
252 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "PrismaticProcessor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<PAD>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<PAD>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"auto_map": {
|
39 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
40 |
+
},
|
41 |
+
"bos_token": "<s>",
|
42 |
+
"clean_up_tokenization_spaces": false,
|
43 |
+
"eos_token": "</s>",
|
44 |
+
"legacy": false,
|
45 |
+
"model_max_length": 2048,
|
46 |
+
"pad_token": "<PAD>",
|
47 |
+
"padding_side": "right",
|
48 |
+
"processor_class": "PrismaticProcessor",
|
49 |
+
"sp_model_kwargs": {},
|
50 |
+
"tokenizer_class": "LlamaTokenizer",
|
51 |
+
"unk_token": "<unk>",
|
52 |
+
"use_default_system_prompt": false
|
53 |
+
}
|