Ndamulelo Nemakhavhani
commited on
Commit
·
4ff3d2d
1
Parent(s):
c3dc528
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc
|
3 |
+
language:
|
4 |
+
- nso
|
5 |
+
metrics:
|
6 |
+
- perplexity
|
7 |
+
tags:
|
8 |
+
- sepedi
|
9 |
+
- sesotho sa leboa
|
10 |
+
- northen sotho
|
11 |
+
- south africa
|
12 |
+
- bantu
|
13 |
+
- xlm-roberta
|
14 |
+
library_name: transformers
|
15 |
+
widget:
|
16 |
+
- text: "mopresidente wa <mask> wa afrika-borwa"
|
17 |
+
---
|
18 |
+
|
19 |
+
|
20 |
+
# Zabantu - Sepedi
|
21 |
+
|
22 |
+
This is a variant of [Zabantu](https://huggingface.co/dsfsi/zabantu-bantu-250m) pre-trained on a monolingual dataset of Sepedi(nso) sentences on a transformer network
|
23 |
+
with 120 million traininable parameters.
|
24 |
+
|
25 |
+
|
26 |
+
# Usage Example(s)
|
27 |
+
|
28 |
+
```python
|
29 |
+
from transformers import pipeline
|
30 |
+
|
31 |
+
# Initialize the pipeline for masked language model
|
32 |
+
unmasker = pipeline('fill-mask', model='dsfsi/zabantu-nso-120m')
|
33 |
+
|
34 |
+
# The Sepedi sentence with a masked token
|
35 |
+
sample_sentences = ["mopresidente wa <mask> wa afrika-borwa", # original token: maloba
|
36 |
+
"bašomedi ba polase ya dinamune ya zebediela citrus ba hlomile magato a <mask> malebana le go se sepetšwe botse ga dilo ka polaseng eo." # original token: boipelaetšo
|
37 |
+
]
|
38 |
+
|
39 |
+
# Perform the fill-mask task
|
40 |
+
results = unmasker(sentence)
|
41 |
+
|
42 |
+
# Display the results
|
43 |
+
for result in results:
|
44 |
+
print(f"Predicted word: {result['token_str']} - Score: {result['score']}")
|
45 |
+
print(f"Full sentence: {result['sequence']}\n")
|
46 |
+
print("=" * 80)
|
47 |
+
```
|