a2c-AntBulletEnv-v0 / config.json
draziert's picture
Initial commit
8ce9cf0
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcdea4e8670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcdea4e8700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcdea4e8790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcdea4e8820>", "_build": "<function ActorCriticPolicy._build at 0x7fcdea4e88b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcdea4e8940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcdea4e89d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcdea4e8a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcdea4e8af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcdea4e8b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcdea4e8c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcdea4e8ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcdea4ded80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000016, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690017310170182184, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPmzjr5XlVQ/TaIbPwJ17z4jE0I9ZgutvuTv5T3f4I8+8JxhP+8Kmb2OExy+kL41P4kL4b6lT6C9i6OqvSSr9T6E604+yiKOvxl9dz7fU8A+VfkJv6zoob86TuC+VE+NvWp7rT5m8ok+8mwowJD2zz45w1O/tBrxPpeEIz+9f/u+ddESPotIBz64p/Q97STKvlz3QT9zpt+8geFivuDoAb36AmS/2FRvu4T+Pj/uvzs9x+OuP2XxkLujxUA/rONCPbwtWL9gtFk8icLfvoOZ8Lxqe60+ZvKJPgWOwj6Q9s8+krXZvtHvbD+XlRY/IIzyvjiaFT6Ufgo+RzQEP/xS2L5iQvs+gcXwvG29cz5et9a8fEoNvJBW7rtRPa8+cJJLPV2dgb3QJFm828FAP8fTPT0TPl085Kp5Oc5l3L7CW/S8anutPmbyiT4FjsI+kPbPPuJjmb7rj6W8BhMSP/TNU7/nDBg/IGtUP9cShT2rXNs+UvRiPx2qIb6fy2G+zb4Fv0vJG7+3niI/UH7lvXGEq75DJIk/TqWkP/CgCz92cpO+u3wxv7lWqD9Szdm+/ELNPWp7rT5m8ok+8mwowJD2zz6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADrdcE1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAc5PvvQAAAAB5+t2/AAAAAO6fCD4AAAAAeuLpPwAAAAAbYrq9AAAAAPCR+j8AAAAAsznOPQAAAABbSADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA05MSNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA8pgr0AAAAAoW32vwAAAAB5jEg9AAAAAAWe7T8AAAAA11q3PQAAAAAruvc/AAAAAN1u1D0AAAAAmUPtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGCGLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDNbR48AAAAAPgG478AAAAA6RLaPQAAAAA6mPg/AAAAAAG2pL0AAAAA91L9PwAAAAC5l+M9AAAAAKf39r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABnQi+1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8qYQPgAAAAB1Wum/AAAAAMpvO70AAAAAExvjPwAAAACCP1g9AAAAAEcO+T8AAAAAxDjTvQAAAAD5rfK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -8.000000000008e-06, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI272bd8ArCMAWyUTegDjAF0lEdAqg2IqslsxnV9lChoBkdAje8WAXl8xGgHTegDaAhHQKoV5Gax5cF1fZQoaAZHQI4TGiUPhAJoB03oA2gIR0CqFkUJng5zdX2UKGgGR0CNs0uGsV+JaAdN6ANoCEdAqhb1oUSIxnV9lChoBkdAiSkUp3HJcWgHTegDaAhHQKoacmDUVi51fZQoaAZHQIzyhAfMfRxoB03oA2gIR0CqJOlCCz1LdX2UKGgGR0CEkYoZQ53laAdN6ANoCEdAqiVNw5vLo3V9lChoBkdAjQhdQwblzWgHTegDaAhHQKol8joIOYp1fZQoaAZHQI5dMXvYvnNoB03oA2gIR0CqKSpGFzuGdX2UKGgGR0CL7Vv99+gEaAdN6ANoCEdAqjFme+VTrHV9lChoBkdAjGbLQgLZz2gHTegDaAhHQKoxyD2alUJ1fZQoaAZHQIxQNW0Z3s5oB03oA2gIR0CqMnTcynDSdX2UKGgGR0CNWT2criEQaAdN6ANoCEdAqjYdaGHpKXV9lChoBkdAhB7sIVuaW2gHTegDaAhHQKpAieVcD8t1fZQoaAZHQIZIazu4PPNoB03oA2gIR0CqQOqgZjx1dX2UKGgGR0CExYSJ0nw5aAdN6ANoCEdAqkGZgTh5xHV9lChoBkdAjQA8aXKKYWgHTegDaAhHQKpE1zaK1oh1fZQoaAZHQI5R/tfG+9JoB03oA2gIR0CqTTOpS75EdX2UKGgGR0CJy3+jM3ZPaAdN6ANoCEdAqk2WjEehf3V9lChoBkdAjeVbCrLhaWgHTegDaAhHQKpORLcsUZh1fZQoaAZHQIkDBagVXV9oB03oA2gIR0CqUkdECvHMdX2UKGgGR0CNwo6ErXlKaAdN6ANoCEdAqlxCUFB6bHV9lChoBkdAjPWFGPPszGgHTegDaAhHQKpco5SWJJp1fZQoaAZHQI27a+cpb2VoB03oA2gIR0CqXVV81Gb1dX2UKGgGR0COgrLpzLfUaAdN6ANoCEdAqmCI8jiXIHV9lChoBkdAkT4h8pkPMGgHTegDaAhHQKppFiR4hU11fZQoaAZHQJHcpOxjawloB03oA2gIR0CqaXv1DjR2dX2UKGgGR0CBdWi4axX5aAdN6ANoCEdAqmowgieNDXV9lChoBkdAkaB4FA3T/mgHTegDaAhHQKpuWfMfRu11fZQoaAZHQJGZXDcdo39oB03oA2gIR0CqeB1ktmL+dX2UKGgGR0COTcK2rn1WaAdN6ANoCEdAqniF9x6v7nV9lChoBkdAj8wDa4+bE2gHTegDaAhHQKp5MxQizLR1fZQoaAZHQIv6WpyZKFtoB03oA2gIR0CqfId8Rcu8dX2UKGgGR0CSuOvDgqEwaAdN6ANoCEdAqoTqMHbAUXV9lChoBkdAlSgsvRJEpmgHTegDaAhHQKqFS2MKkVN1fZQoaAZHQIA4NsguAZtoB03oA2gIR0CqhgKsdT5wdX2UKGgGR0B8J7xYq5LAaAdN6ANoCEdAqoq28wpOOHV9lChoBkdAlT1WwJPZZmgHTegDaAhHQKqT9Fz+3ph1fZQoaAZHQJUzkN0/4ZdoB03oA2gIR0CqlGJrtVrAdX2UKGgGR0CRNdofSx7iaAdN6ANoCEdAqpUUAggX/HV9lChoBkdAinhO4wyqMmgHTegDaAhHQKqYUq814xF1fZQoaAZHQI60YP/aQFNoB03oA2gIR0CqoKghr30xdX2UKGgGR0CQmy5vcafjaAdN6ANoCEdAqqEKsMiKSHV9lChoBkdAj/oAGB4D92gHTegDaAhHQKqh1Vy3kPt1fZQoaAZHQIRnjlo11nxoB03oA2gIR0CqpqtXYDkmdX2UKGgGR0CPIv4vexfOaAdN6ANoCEdAqq+L6vaDf3V9lChoBkdAk4YPjn3cpWgHTegDaAhHQKqv7GlQ/HJ1fZQoaAZHQJJgX4agmJFoB03oA2gIR0CqsJuOsDGMdX2UKGgGR0CPB7Sb6P8yaAdN6ANoCEdAqrPkRSP2f3V9lChoBkdAiIeyHuZ1FGgHTegDaAhHQKq8KGcFyJd1fZQoaAZHQI3zVDWsijdoB03oA2gIR0CqvIfoaDPGdX2UKGgGR0CI7dIQOFxoaAdN6ANoCEdAqr2Vu+AVf3V9lChoBkdAh+T6EJ0GNmgHTegDaAhHQKrCRqGlANZ1fZQoaAZHQIytAkC3gDRoB03oA2gIR0CqyzrjPv8ZdX2UKGgGR0CLFvlOGj9GaAdN6ANoCEdAqsugI6bONnV9lChoBkdAi1jqeCkGimgHTegDaAhHQKrMT8UmD151fZQoaAZHQIuxmmxdIG1oB03oA2gIR0Cqz4KmTC+DdX2UKGgGR0CMhK8brC3xaAdN6ANoCEdAqtg3dXT3I3V9lChoBkdAjl1ze40/GGgHTegDaAhHQKrYwQmu1Wt1fZQoaAZHQIv0q83++/RoB03oA2gIR0Cq2b3j+717dX2UKGgGR0CJ44OJcgQpaAdN6ANoCEdAqt6uhIvrW3V9lChoBkdAfRnGgBcRlGgHTegDaAhHQKrnWD/VAiV1fZQoaAZHQIFzZXuE25xoB03oA2gIR0Cq57/EGZ/kdX2UKGgGR0CCc6IqLCN0aAdN6ANoCEdAquhwmkWRBHV9lChoBkdAgDLcvmHP/2gHTegDaAhHQKrrvRO1v2p1fZQoaAZHQH2Tx51Ng0FoB03oA2gIR0Cq9P7jDKoydX2UKGgGR0CI/+hK15SnaAdN6ANoCEdAqvWUcfeUIXV9lChoBkdAgfbGIsRQJ2gHTegDaAhHQKr2jje9Ba91fZQoaAZHQIotCvovBadoB03oA2gIR0Cq+vZlOGj9dX2UKGgGR0B/tYLgGbCraAdN6ANoCEdAqwOzrJKaonV9lChoBkdAgkgCHqNZNmgHTegDaAhHQKsEF6By0a91fZQoaAZHQIzCgu9OARVoB03oA2gIR0CrBMZsj3VTdX2UKGgGR0B5hcmWt2cKaAdN6ANoCEdAqwgCrNnoPnV9lChoBkdAgOzwqAjIJmgHTegDaAhHQKsSCjbBXS11fZQoaAZHQIqeQuPFNtZoB03oA2gIR0CrEp5uAI6bdX2UKGgGR0CBwLMvAXVLaAdN6ANoCEdAqxO11p0wJ3V9lChoBkdAfOSsOoYNzGgHTegDaAhHQKsXgDBdld11fZQoaAZHQIttrYwqRU5oB03oA2gIR0CrIBjdYW+HdX2UKGgGR0CM7PsvZh8ZaAdN6ANoCEdAqyCCPGQ0XXV9lChoBkdAejJ8Aq/dqWgHTegDaAhHQKshL/HYHxB1fZQoaAZHQH9eWBWgezVoB03oA2gIR0CrJH2AG0NSdX2UKGgGR0CNUM9wm3OOaAdN6ANoCEdAqy7R3HJcPnV9lChoBkdAgQ2kVvddmmgHTegDaAhHQKsvcj9GZu11fZQoaAZHQIohcJ8fFJhoB03oA2gIR0CrMG+cpb2UdX2UKGgGR0B9ZW3EyckMaAdN6ANoCEdAqzOvgR9PUXV9lChoBkdAgEEkj5bhWGgHTegDaAhHQKs8QuoxYaJ1fZQoaAZHQILJ26VdHDtoB03oA2gIR0CrPKeZof0VdX2UKGgGR0CCuICXhOxjaAdN6ANoCEdAqz1dEXtSh3V9lChoBkdAg4SpGOMl1WgHTegDaAhHQKtArhvze411fZQoaAZHQIRuc+mm+CdoB03oA2gIR0CrS75nUUfxdX2UKGgGR0CAKIiwB5ooaAdN6ANoCEdAq0wkzVMEinV9lChoBkdAexUX9R77bmgHTegDaAhHQKtM02qkuYh1fZQoaAZHQIBAjVlPJq9oB03oA2gIR0CrUEHfdhy9dX2UKGgGR0CAMxgIhQnAaAdN6ANoCEdAq1jDpeNT+HV9lChoBkdAgMZ9uP3i72gHTegDaAhHQKtZKUi6g/V1fZQoaAZHQITTx2bG3nZoB03oA2gIR0CrWeDpkf9xdX2UKGgGR0CCI9bVz6rOaAdN6ANoCEdAq10ky1uzhXV9lChoBkdAdWFy6cy31GgHTegDaAhHQKtoKbvw3Hd1fZQoaAZHQINbAOMERrdoB03oA2gIR0CraIxG+bmVdX2UKGgGR0B7RKX2M85kaAdN6ANoCEdAq2k50dRzinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 41667, "n_steps": 12, "gamma": 0.95, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}