File size: 14,312 Bytes
e9f1ae3 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b79cceaea70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b79cceaeb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b79cceaeb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b79cceaec20>", "_build": "<function ActorCriticPolicy._build at 0x7b79cceaecb0>", "forward": "<function ActorCriticPolicy.forward at 0x7b79cceaed40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b79cceaedd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b79cceaee60>", "_predict": "<function ActorCriticPolicy._predict at 0x7b79cceaeef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b79cceaef80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b79cceaf010>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b79cceaf0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b79d986fd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690168510310218753, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIXNib9ORIG/Rszlvoq8Wb/SsAo/M1pdPdRWSz9I7AJAdcTlPbMFFL9q4IW/uiADPdRrfT9jogfA1layv5l1uD+t0a8/skxav4BR0j4bm/a+aIvfPgx2i79s27e/i2EzPxkoET/PKqA+YSoYPzBvhz/X2+s+242av5+NZr9EMyC/+cnyvV1Tir//Ot2+DVyRPw49lz+W1Gk+X3c2v43GGb9u7ak/xYSPvDf0zr+XpTW/CF6uv9j4hD8/4QDA3ikMvrXiGr8z4RxALxOkP1ONob4ZKBE/zyqgPmEqGD+Q8nG/M8ABPlkHcD7jxio/fqfBvmMqbzwjuNE+fxv/vkGDPr66eRS/iBkJPwFDGD4phPM93WrLvk5iKT8ZGwU/eNHWPCy73T7CSCo9lE4qv3SlbD3kcbi/dTkQOcerqT8zfka9GSgRP88qoD5hKhg/kPJxvxIZGD/7crK/8R34v/FDhz7PXZG+n1guPxZIhr2HuXg/0rViP7Ucpz+uf5a+TFRSPN/c7j4tsxc/ptS5v5FyrD+yaEG+esQEwAGY/7+VwlI+Jjqqv3Nr7D5r5Ew/X8QDQBkoET/PKqA+YSoYPzBvhz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABFkEu0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7iTNvAAAAAAn0Pu/AAAAAEiQ970AAAAAO8b6PwAAAAB66RE8AAAAAOI7+z8AAAAAhW+YvQAAAAC8pOu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5xfWNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPXs7b0AAAAALmv4vwAAAADeHgc+AAAAAFr++D8AAAAAQnmBvQAAAADiRu4/AAAAABdn9z0AAAAA3pngvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOF5EzIAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICKpF48AAAAAK8z778AAAAAOZFJvQAAAAC/QwFAAAAAAMjxhT0AAAAAwtLbPwAAAADqtcU6AAAAAFC94b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACHelY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlqq/vQAAAACCiN2/AAAAACdJ0D0AAAAAffjwPwAAAACHGQ6+AAAAABcz7j8AAAAAaI+qvQAAAACqRv2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJAp0wztTk2MAWyUTegDjAF0lEdAsH6AFqzqr3V9lChoBkdAkoX90zTF2mgHTegDaAhHQLB/KMBIWgx1fZQoaAZHQJFgIi1RceNoB03oA2gIR0Cwg2+WjXWfdX2UKGgGR0CRVieUpuuSaAdN6ANoCEdAsINyTkhib3V9lChoBkdAiKhplz2ex2gHTegDaAhHQLCE/X3xnWd1fZQoaAZHQJNrYhib2DhoB03oA2gIR0CwhaeGXXyzdX2UKGgGR0CSAtgntv4uaAdN6ANoCEdAsIsDOB19v3V9lChoBkdAhu+mIsRQJ2gHTegDaAhHQLCLBfhddE91fZQoaAZHQIx1rFbVz6toB03oA2gIR0CwjIuRoysTdX2UKGgGR0CPLCf+0gKXaAdN6ANoCEdAsI0xAv+OwXV9lChoBkdAkI1X3cpLEmgHTegDaAhHQLCRW27Wd3B1fZQoaAZHQI9V4hhYvFpoB03oA2gIR0CwkV5KzzErdX2UKGgGR0CUqJk7OmiyaAdN6ANoCEdAsJLibhFVk3V9lChoBkdAkhbDBZZB9mgHTegDaAhHQLCThQEIPbx1fZQoaAZHQJNz92B8QZpoB03oA2gIR0CwmNOXE61cdX2UKGgGR0CTyDqxC6YmaAdN6ANoCEdAsJjWWGATZnV9lChoBkdAg0yOeSSvDGgHTegDaAhHQLCaYq6e5Fx1fZQoaAZHQJV/bxYq5LBoB03oA2gIR0CwmwXuZ1FIdX2UKGgGR0CR5ksySFGoaAdN6ANoCEdAsJ8/rgOz6nV9lChoBkdAlLoIrvsqrmgHTegDaAhHQLCfQn6VMVV1fZQoaAZHQJRk4QxvegtoB03oA2gIR0CwoM13hXKbdX2UKGgGR0CTCbw3YL9daAdN6ANoCEdAsKFzUTcqOXV9lChoBkdAjMgsPBi1A2gHTegDaAhHQLCm0NJe3QV1fZQoaAZHQJDCPmp2ll9oB03oA2gIR0CwptOSr5qNdX2UKGgGR0CLu2LRa5f/aAdN6ANoCEdAsKhXq1PWQXV9lChoBkdAipLNjkMkQmgHTegDaAhHQLCo9djG1hN1fZQoaAZHQIhkW0ojOcFoB03oA2gIR0CwrTJ97WupdX2UKGgGR0CFXCkCV8kVaAdN6ANoCEdAsK01WFN+LHV9lChoBkdAhTHCE6DGtWgHTegDaAhHQLCuu7Dl5nl1fZQoaAZHQIZQJllK9PFoB03oA2gIR0Cwr2BMSK3vdX2UKGgGR0CJYWdlum78aAdN6ANoCEdAsLS3mozeoHV9lChoBkdAh1A7yhBZ6mgHTegDaAhHQLC0uk8Rtgt1fZQoaAZHQIyYogNgBtFoB03oA2gIR0CwtkRxgiNbdX2UKGgGR0CPr0w6hg3MaAdN6ANoCEdAsLbpj6N2knV9lChoBkdAkgZXbmEGq2gHTegDaAhHQLC7HMqz7dl1fZQoaAZHQJIfaCuloDhoB03oA2gIR0Cwux+UliSadX2UKGgGR0CSPYeOGTLXaAdN6ANoCEdAsLyt3MY/FHV9lChoBkdAkk/Fp9JBgWgHTegDaAhHQLC9fWom5Ud1fZQoaAZHQJTGxftx+8ZoB03oA2gIR0CwwpzynUDudX2UKGgGR0CRsNYvFm4BaAdN6ANoCEdAsMKfrAxi5XV9lChoBkdAkxr84tHx0GgHTegDaAhHQLDEIIxQBPt1fZQoaAZHQJD5hv3rUspoB03oA2gIR0CwxMHBpHqedX2UKGgGR0CW9d2Jiy6daAdN6ANoCEdAsMj5Oj7AL3V9lChoBkdAkRYeAVfu1GgHTegDaAhHQLDI/BjnV5N1fZQoaAZHQJYPdr9ETg5oB03oA2gIR0Cwyo0KNQ0odX2UKGgGR0CO3//qgRK6aAdN6ANoCEdAsMt7DziCKHV9lChoBkdAkVBKxkd3jmgHTegDaAhHQLDQj80k4WF1fZQoaAZHQJVE49SuQp5oB03oA2gIR0Cw0JKoddVvdX2UKGgGR0A7JhmXgLqmaAdLemgIR0Cw0VU6PsAvdX2UKGgGR0CR8Xy1eBxxaAdN6ANoCEdAsNIbhsImgXV9lChoBkdAk/GfUrkKeGgHTegDaAhHQLDSw3rD6311fZQoaAZHQDxgmAskIHFoB0tqaAhHQLDSyrkKeCl1fZQoaAZHQIjhE8FINExoB03oA2gIR0Cw1wPBeokzdX2UKGgGR0CJkRrAxi5NaAdN6ANoCEdAsNfQXYUWVXV9lChoBkdAf+WFH8TBZmgHTegDaAhHQLDZub4agmJ1fZQoaAZHQIspLhLoOhFoB03oA2gIR0Cw2cL655JLdX2UKGgGR0A/yBguyu6maAdLZ2gIR0Cw2sz2alUIdX2UKGgGR0CQCFsAvL5iaAdN6ANoCEdAsN6ukyk9EHV9lChoBkdAj6PhbW3BpGgHTegDaAhHQLDfd08vEjx1fZQoaAZHQI5l07nxJ/ZoB03oA2gIR0Cw4OIYzi0fdX2UKGgGR0CI+4e5Fw1jaAdN6ANoCEdAsOGURUWEb3V9lChoBkdAkeHN4RmK7GgHTegDaAhHQLDlFUWl/H51fZQoaAZHQI8/vQD3dsVoB03oA2gIR0Cw5e+fmLccdX2UKGgGR0CTk539aUzLaAdN6ANoCEdAsOf1+NLlFXV9lChoBkdAkTDqYAsCk2gHTegDaAhHQLDpBokRjBl1fZQoaAZHQIjqJ+jM3ZRoB03oA2gIR0Cw7KgJkXk6dX2UKGgGR0CRUBBikO7QaAdN6ANoCEdAsO1qwjdHlXV9lChoBkdAkDYVQMx46mgHTegDaAhHQLDu2PXkHUt1fZQoaAZHQIt+rnmq5sloB03oA2gIR0Cw74paFEiMdX2UKGgGR0CJCYUX531SaAdN6ANoCEdAsPMSesgdO3V9lChoBkdAkK2jIq9XcWgHTegDaAhHQLD0I1ivxH51fZQoaAZHQJMfrjp9qlBoB03oA2gIR0Cw9jvKyOaOdX2UKGgGR0CNNhqpLmITaAdN6ANoCEdAsPcinfl6q3V9lChoBkdAi8G3Q2MsH2gHTegDaAhHQLD6xDZlFtt1fZQoaAZHQIunU/yGzrxoB03oA2gIR0Cw+42fGuLadX2UKGgGR0CJCrPoFFDwaAdN6ANoCEdAsPz9TaTOgXV9lChoBkdAhbA5rP+n62gHTegDaAhHQLD9sM2FWXF1fZQoaAZHQJDMu5TZQHloB03oA2gIR0CxAYgBtDUmdX2UKGgGR0CREYvQWvbHaAdN6ANoCEdAsQKkgeRxLnV9lChoBkdAiNBsfA9FF2gHTegDaAhHQLEEoIXj2jB1fZQoaAZHQIVkqW1MM7VoB03oA2gIR0CxBVTGLk0adX2UKGgGR0CPHu44Ia99aAdN6ANoCEdAsQjUqmTC+HV9lChoBkdAkkmG3WnTAmgHTegDaAhHQLEJk36AOKB1fZQoaAZHQJM0qbc45tFoB03oA2gIR0CxCvl3Y+SsdX2UKGgGR0CQKTfjCHh1aAdN6ANoCEdAsQujVNHpbHV9lChoBkdAkRjokAxSHmgHTegDaAhHQLEPeT+ee4F1fZQoaAZHQJGzviXIEKVoB03oA2gIR0CxEJkdBBzFdX2UKGgGR0CTEs/IsAeaaAdN6ANoCEdAsRJn4FiazHV9lChoBkdAkbj0XDWK/GgHTegDaAhHQLETGimEXch1fZQoaAZHQJWk+ZLIxQBoB03oA2gIR0CxFqsWGh24dX2UKGgGR0CVK41ndweeaAdN6ANoCEdAsRd9irksBnV9lChoBkdAkirjcVQAMmgHTegDaAhHQLEY8F/QSjB1fZQoaAZHQIlGzWwu/URoB03oA2gIR0CxGZ/c8DB/dX2UKGgGR0CKLgzTF2mpaAdN6ANoCEdAsR3X1TR6W3V9lChoBkdAkKfAVKwpv2gHTegDaAhHQLEe/cLSeAd1fZQoaAZHQJBe5QIldC5oB03oA2gIR0CxIH9tIkJKdX2UKGgGR0CHixQbdadMaAdN6ANoCEdAsSFB8UmD2HV9lChoBkdAkmjvkili0GgHTegDaAhHQLEl4f/3nIR1fZQoaAZHQJPvAQPI4l1oB03oA2gIR0CxJqbkS26TdX2UKGgGR0CJihU8V58jaAdN6ANoCEdAsSgYVFhG6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |