--- license: apache-2.0 language: - ko - en metrics: - accuracy base_model: - BAAI/bge-reranker-v2-m3 pipeline_tag: text-classification library_name: sentence-transformers --- # Reranker (Cross-Encoder) Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function. ## Model Details - Base model : BAAI/bge-reranker-v2-m3 - The multilingual model has been optimized for Korean. ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('dragonkue/bge-reranker-v2-m3-ko') tokenizer = AutoTokenizer.from_pretrained('dragonkue/bge-reranker-v2-m3-ko') features = tokenizer([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'], ['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): logits = model(**features).logits scores = torch.sigmoid(logits) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Usage with SentenceTransformers First install the Sentence Transformers library: ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import CrossEncoder model = CrossEncoder('dragonkue/bge-reranker-v2-m3-ko', default_activation_function=torch.nn.Sigmoid()) scores = model.predict([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'], ['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']]) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Usage with FlagEmbedding First install the FlagEmbedding library: ``` pip install -U FlagEmbedding ``` ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('dragonkue/bge-reranker-v2-m3-ko') scores = reranker.compute_score([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'], ['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']], normalize=True) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Fine-tune Refer to https://github.com/FlagOpen/FlagEmbedding ## Evaluation ### Bi-encoder and Cross-encoder Bi-Encoders convert texts into fixed-size vectors and efficiently calculate similarities between them. They are fast and ideal for tasks like semantic search and classification, making them suitable for processing large datasets quickly. Cross-Encoders directly compare pairs of texts to compute similarity scores, providing more accurate results. While they are slower due to needing to process each pair, they excel in re-ranking top results and are important in Advanced RAG techniques for enhancing text generation. ### Korean Embedding Benchmark with AutoRAG (https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) This is a Korean embedding benchmark for the financial sector. **Top-k 1** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.3596 | 0.3596 | 0.3596 | | KoSimCSE-roberta | 0.4298 | 0.4298 | 0.4298 | | Cohere embed-multilingual-v3.0 | 0.3596 | 0.3596 | 0.3596 | | openai ada 002 | 0.4737 | 0.4737 | 0.4737 | | multilingual-e5-large-instruct | 0.4649 | 0.4649 | 0.4649 | | Upstage Embedding | 0.6579 | 0.6579 | 0.6579 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.2982 | 0.2982 | 0.2982 | | openai_embed_3_small | 0.5439 | 0.5439 | 0.5439 | | ko-sroberta-multitask | 0.4211 | 0.4211 | 0.4211 | | openai_embed_3_large | 0.6053 | 0.6053 | 0.6053 | | KU-HIAI-ONTHEIT-large-v1 | 0.7105 | 0.7105 | 0.7105 | | KU-HIAI-ONTHEIT-large-v1.1 | 0.7193 | 0.7193 | 0.7193 | | kf-deberta-multitask | 0.4561 | 0.4561 | 0.4561 | | gte-multilingual-base | 0.5877 | 0.5877 | 0.5877 | | KoE5 | 0.7018 | 0.7018 | 0.7018 | | BGE-m3 | 0.6578 | 0.6578 | 0.6578 | | bge-m3-korean | 0.5351 | 0.5351 | 0.5351 | | **BGE-m3-ko** | **0.7456** | **0.7456** | **0.7456** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.7281 | 0.7281 | 0.7281 | | jina-reranker-v2-base-multilingual | 0.8070 | 0.8070 | 0.8070 | | bge-reranker-v2-m3 | 0.8772 | 0.8772 | 0.8772 | | **bge-reranker-v2-m3-ko** | **0.9123** | **0.9123** | **0.9123** | **Top-k 3** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.2368 | 0.4737 | 0.1579 | | KoSimCSE-roberta | 0.3026 | 0.6053 | 0.2018 | | Cohere embed-multilingual-v3.0 | 0.2851 | 0.5702 | 0.1901 | | openai ada 002 | 0.3553 | 0.7105 | 0.2368 | | multilingual-e5-large-instruct | 0.3333 | 0.6667 | 0.2222 | | Upstage Embedding | 0.4211 | 0.8421 | 0.2807 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.2061 | 0.4123 | 0.1374 | | openai_embed_3_small | 0.3640 | 0.7281 | 0.2427 | | ko-sroberta-multitask | 0.2939 | 0.5877 | 0.1959 | | openai_embed_3_large | 0.3947 | 0.7895 | 0.2632 | | KU-HIAI-ONTHEIT-large-v1 | 0.4386 | 0.8772 | 0.2924 | | KU-HIAI-ONTHEIT-large-v1.1 | 0.4430 | 0.8860 | 0.2953 | | kf-deberta-multitask | 0.3158 | 0.6316 | 0.2105 | | gte-multilingual-base | 0.4035 | 0.8070 | 0.2690 | | KoE5 | 0.4254 | 0.8509 | 0.2836 | | BGE-m3 | 0.4254 | 0.8508 | 0.2836 | | bge-m3-korean | 0.3684 | 0.7368 | 0.2456 | | **BGE-m3-ko** | **0.4517** | **0.9035** | **0.3011** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.4605 | 0.9211 | 0.3070 | | jina-reranker-v2-base-multilingual | 0.4649 | 0.9298 | 0.3099 | | bge-reranker-v2-m3 | 0.4781 | 0.9561 | 0.3187 | | **bge-reranker-v2-m3-ko** | **0.4825** | **0.9649** | **0.3216** | **Top-k 5** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.1813 | 0.5439 | 0.1088 | | KoSimCSE-roberta | 0.2164 | 0.6491 | 0.1298 | | Cohere embed-multilingual-v3.0 | 0.2076 | 0.6228 | 0.1246 | | openai ada 002 | 0.2602 | 0.7807 | 0.1561 | | multilingual-e5-large-instruct | 0.2544 | 0.7632 | 0.1526 | | Upstage Embedding | 0.2982 | 0.8947 | 0.1789 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.1637 | 0.4912 | 0.0982 | | openai_embed_3_small | 0.2690 | 0.8070 | 0.1614 | | ko-sroberta-multitask | 0.2164 | 0.6491 | 0.1298 | | openai_embed_3_large | 0.2807 | 0.8421 | 0.1684 | | KU-HIAI-ONTHEIT-large-v1 | 0.3041 | 0.9123 | 0.1825 | | KU-HIAI-ONTHEIT-large-v1.1 | **0.3099** | **0.9298** | **0.1860** | | kf-deberta-multitask | 0.2281 | 0.6842 | 0.1368 | | gte-multilingual-base | 0.2865 | 0.8596 | 0.1719 | | KoE5 | 0.2982 | 0.8947 | 0.1789 | | BGE-m3 | 0.3041 | 0.9123 | 0.1825 | | bge-m3-korean | 0.2661 | 0.7982 | 0.1596 | | **BGE-m3-ko** | **0.3099** | **0.9298** | **0.1860** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.3158 | 0.9474 | 0.1895 | | jina-reranker-v2-base-multilingual | 0.3129 | 0.9386 | 0.1877 | | bge-reranker-v2-m3 | **0.3216** | **0.9649** | **0.1930** | | **bge-reranker-v2-m3-ko** | **0.3216** | **0.9649** | **0.1930** |