Update cross_encoder_eval.ipynb
Browse files- cross_encoder_eval.ipynb +1 -3
cross_encoder_eval.ipynb
CHANGED
@@ -28,8 +28,6 @@
|
|
28 |
"source": [
|
29 |
"model_path = '...'\n",
|
30 |
"qd_df = pd.read_parquet('AutoRAG-example-korean-embedding-benchmark/data/qa_v4.parquet')\n",
|
31 |
-
"qd_df['generation_gt'].apply(lambda x : len(x)).describe()\n",
|
32 |
-
"qd_df['retrieval_gt'].apply(lambda x : len(x[0])).describe()\n",
|
33 |
"qd_df['retrieval_gt'] = qd_df['retrieval_gt'].apply(lambda x : x[0][0])\n",
|
34 |
"\n",
|
35 |
"corpus_df = pd.read_parquet('AutoRAG-example-korean-embedding-benchmark/data/ocr_corpus_v3.parquet')\n",
|
@@ -197,7 +195,7 @@
|
|
197 |
" return accuracies, f1_scores, recalls, precisions\n",
|
198 |
"\n",
|
199 |
"\n",
|
200 |
-
"# 모델 평가
|
201 |
"reranker = FlagReranker(model_path, use_fp16=True)\n",
|
202 |
"\n",
|
203 |
"accuracies, f1_scores, recalls, precisions = evaluate_model(\n",
|
|
|
28 |
"source": [
|
29 |
"model_path = '...'\n",
|
30 |
"qd_df = pd.read_parquet('AutoRAG-example-korean-embedding-benchmark/data/qa_v4.parquet')\n",
|
|
|
|
|
31 |
"qd_df['retrieval_gt'] = qd_df['retrieval_gt'].apply(lambda x : x[0][0])\n",
|
32 |
"\n",
|
33 |
"corpus_df = pd.read_parquet('AutoRAG-example-korean-embedding-benchmark/data/ocr_corpus_v3.parquet')\n",
|
|
|
195 |
" return accuracies, f1_scores, recalls, precisions\n",
|
196 |
"\n",
|
197 |
"\n",
|
198 |
+
"# 모델 평가 \n",
|
199 |
"reranker = FlagReranker(model_path, use_fp16=True)\n",
|
200 |
"\n",
|
201 |
"accuracies, f1_scores, recalls, precisions = evaluate_model(\n",
|