--- license: apache-2.0 pipeline_tag: mask-generation --- # NanoSAM: Accelerated Segment Anything Model for Edge deployment - [GitHub](https://github.com/binh234/nanosam) - [Demo](https://huggingface.co/spaces/dragonSwing/nanosam) ## Pretrained Models NanoSAM performance on edge devices. Latency/throughput is measured on NVIDIA Jetson Xavier NX, and NVIDIA T4 GPU with TensorRT, fp16. Data transfer time is included. | Image Encoder | CPU | Jetson Xavier NX | T4 | Model size | Download | | --------------- | :---: | :--------------: | :---: | :--------: | :------------------------------------------------------------------------------------------------------: | | PPHGV2-B1 | 110ms | 9.6ms | 2.4ms | 12.7MB | [Link](https://huggingface.co/dragonSwing/nanosam/resolve/main/sam_hgv2_b1_ln_nonorm_image_encoder.onnx) | | PPHGV2-B2 | 200ms | 12.4ms | 3.2ms | 29.5MB | [Link](https://huggingface.co/dragonSwing/nanosam/resolve/main/sam_hgv2_b1_ln_nonorm_image_encoder.onnx) | | PPHGV2-B4 | 300ms | 17.3ms | 4.1ms | 61.4MB | [Link](https://huggingface.co/dragonSwing/nanosam/resolve/main/sam_hgv2_b1_ln_nonorm_image_encoder.onnx) | | ResNet18 | 500ms | 22.4ms | 5.8ms | 63.2MB | [Link](https://drive.google.com/file/d/14-SsvoaTl-esC3JOzomHDnI9OGgdO2OR/view?usp=drive_link) | | EfficientViT-L0 | 1s | 31.6ms | 6ms | 117.5MB | - | Zero-Shot Instance Segmentation on COCO2017 validation dataset | Image Encoder | mAPmask
50-95 | mIoU (all) | mIoU (large) | mIoU (medium) | mIoU (small) | | --------------- | :-------------------: | :--------: | :----------: | :-----------: | :----------: | | ResNet18 | - | 70.6 | 79.6 | 73.8 | 62.4 | | MobileSAM | - | 72.8 | 80.4 | 75.9 | 65.8 | | PPHGV2-B1 | 41.2 | 75.6 | 81.2 | 77.4 | 70.8 | | PPHGV2-B2 | 42.6 | 76.5 | 82.2 | 78.5 | 71.5 | | PPHGV2-B4 | 44.0 | 77.3 | 83.0 | 79.7 | 72.1 | | EfficientViT-L0 | 45.6 | 78.6 | 83.7 | 81.0 | 73.3 | ## Usage ```python3 from nanosam.utils.predictor import Predictor image_encoder_cfg = { "path": "data/sam_hgv2_b4_ln_nonorm_image_encoder.onnx", "name": "OnnxModel", "provider": "cpu", "normalize_input": False, } mask_decoder_cfg = { "path": "data/efficientvit_l0_mask_decoder.onnx", "name": "OnnxModel", "provider": "cpu", } predictor = Predictor(encoder_cfg, decoder_cfg) image = PIL.Image.open("assets/dogs.jpg") predictor.set_image(image) mask, _, _ = predictor.predict(np.array([[x, y]]), np.array([1])) ``` The point labels may be | Point Label | Description | | :---------: | ------------------------- | | 0 | Background point | | 1 | Foreground point | | 2 | Bounding box top-left | | 3 | Bounding box bottom-right |