--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classfication - ViT - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-beans-demo-v5 results: [] --- # vit-base-beans-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0254 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0887 | 1.5385 | 100 | 0.0401 | 0.9925 | | 0.0115 | 3.0769 | 200 | 0.0254 | 0.9925 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3