# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import typing as tp import numpy as np import torch.nn as nn from .conv import StreamableConv1d, StreamableConvTranspose1d from .lstm import StreamableLSTM class SEANetResnetBlock(nn.Module): """Residual block from SEANet model. Args: dim (int): Dimension of the input/output. kernel_sizes (list): List of kernel sizes for the convolutions. dilations (list): List of dilations for the convolutions. activation (str): Activation function. activation_params (dict): Parameters to provide to the activation function. norm (str): Normalization method. norm_params (dict): Parameters to provide to the underlying normalization used along with the convolution. causal (bool): Whether to use fully causal convolution. pad_mode (str): Padding mode for the convolutions. compress (int): Reduced dimensionality in residual branches (from Demucs v3). true_skip (bool): Whether to use true skip connection or a simple (streamable) convolution as the skip connection. """ def __init__(self, dim: int, kernel_sizes: tp.List[int] = [3, 1], dilations: tp.List[int] = [1, 1], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, norm: str = 'none', norm_params: tp.Dict[str, tp.Any] = {}, causal: bool = False, pad_mode: str = 'reflect', compress: int = 2, true_skip: bool = True): super().__init__() assert len(kernel_sizes) == len(dilations), 'Number of kernel sizes should match number of dilations' act = getattr(nn, activation) hidden = dim // compress block = [] for i, (kernel_size, dilation) in enumerate(zip(kernel_sizes, dilations)): in_chs = dim if i == 0 else hidden out_chs = dim if i == len(kernel_sizes) - 1 else hidden block += [ act(**activation_params), StreamableConv1d(in_chs, out_chs, kernel_size=kernel_size, dilation=dilation, norm=norm, norm_kwargs=norm_params, causal=causal, pad_mode=pad_mode), ] self.block = nn.Sequential(*block) self.shortcut: nn.Module if true_skip: self.shortcut = nn.Identity() else: self.shortcut = StreamableConv1d(dim, dim, kernel_size=1, norm=norm, norm_kwargs=norm_params, causal=causal, pad_mode=pad_mode) def forward(self, x): return self.shortcut(x) + self.block(x) class SEANetDecoder(nn.Module): def __init__(self, channels: int = 1, dimension: int = 128, n_filters: int = 32, n_residual_layers: int = 3, ratios: tp.List[int] = [8, 5, 4, 2], activation: str = 'ELU', activation_params: dict = {'alpha': 1.0}, final_activation: tp.Optional[str] = None, final_activation_params: tp.Optional[dict] = None, norm: str = 'none', norm_params: tp.Dict[str, tp.Any] = {}, kernel_size: int = 7, last_kernel_size: int = 7, residual_kernel_size: int = 3, dilation_base: int = 2, causal: bool = False, pad_mode: str = 'reflect', true_skip: bool = True, compress: int = 2, lstm: int = 0, disable_norm_outer_blocks: int = 0, trim_right_ratio: float = 1.0): super().__init__() self.dimension = dimension self.channels = channels self.n_filters = n_filters self.ratios = ratios del ratios self.n_residual_layers = n_residual_layers self.hop_length = np.prod(self.ratios) self.n_blocks = len(self.ratios) + 2 # first and last conv + residual blocks self.disable_norm_outer_blocks = disable_norm_outer_blocks assert self.disable_norm_outer_blocks >= 0 and self.disable_norm_outer_blocks <= self.n_blocks, \ "Number of blocks for which to disable norm is invalid." \ "It should be lower or equal to the actual number of blocks in the network and greater or equal to 0." act = getattr(nn, activation) mult = int(2 ** len(self.ratios)) model: tp.List[nn.Module] = [ StreamableConv1d(dimension, mult * n_filters, kernel_size, norm='none' if self.disable_norm_outer_blocks == self.n_blocks else norm, norm_kwargs=norm_params, causal=causal, pad_mode=pad_mode) ] if lstm: model += [StreamableLSTM(mult * n_filters, num_layers=lstm)] # Upsample to raw audio scale for i, ratio in enumerate(self.ratios): block_norm = 'none' if self.disable_norm_outer_blocks >= self.n_blocks - (i + 1) else norm # Add upsampling layers model += [ act(**activation_params), StreamableConvTranspose1d(mult * n_filters, mult * n_filters // 2, kernel_size=ratio * 2, stride=ratio, norm=block_norm, norm_kwargs=norm_params, causal=causal, trim_right_ratio=trim_right_ratio), ] # Add residual layers for j in range(n_residual_layers): model += [ SEANetResnetBlock(mult * n_filters // 2, kernel_sizes=[residual_kernel_size, 1], dilations=[dilation_base ** j, 1], activation=activation, activation_params=activation_params, norm=block_norm, norm_params=norm_params, causal=causal, pad_mode=pad_mode, compress=compress, true_skip=true_skip)] mult //= 2 # Add final layers model += [ act(**activation_params), StreamableConv1d(n_filters, channels, last_kernel_size, norm='none' if self.disable_norm_outer_blocks >= 1 else norm, norm_kwargs=norm_params, causal=causal, pad_mode=pad_mode) ] # Add optional final activation to decoder (eg. tanh) if final_activation is not None: final_act = getattr(nn, final_activation) final_activation_params = final_activation_params or {} model += [ final_act(**final_activation_params) ] self.model = nn.Sequential(*model) def forward(self, z): y = self.model(z) return y