{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0a73874960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651726710.3496752, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBCBL4fE+U6bn7bO29W5bnsSpe8mkfLOgAAgD8AAIA/JKMEv5GHoz5Odss9p9Wbvn+E07yByRy9AAAAAAAAAACTBoo+hMSnPoKxnb3x1IK+JwdevQXazzsAAAAAAAAAAFow/r1IUd85nusrO1Z3rriKmKe72oaWOQAAgD8AAIA/uzuKvvvP6jsWgNk6abyFuDSCg72IEwC6AACAPwAAgD9Q3s4+NKGkPW7NB7u9zkK5ANeqPeUmijoAAIA/AACAP4ABXb32hFe6R3yxO9HynThNxOY5uJdYugAAgD8AAIA/WvYNvwo1Gj4GGeA8lBQBvqioGr3ulBM9AAAAAAAAAADmQMI9XI9euhC8SLxhmP+1hMsHO+bEZzUAAIA/AACAPyYsyz0fjbK5vo1+OWKGXjYL5ik64HKXuAAAgD8AAIA/4K9nvm8KOT/WbQG+7NqTvok3IL4C+d09AAAAAAAAAAD2dJe+YSWFvKryJTqaXFA41NDfPYrYQrkAAIA/AACAP/PHgz1cO1i6ZlbYOpq/pzXaNIO4Sx/3uQAAgD8AAIA/pgmPPeyB9bm7C6C680QdtWtX7TpDm7c5AACAPwAAgD8qrZI+yVx/P2NjFb3t5Xq+3UWCPb2wXLwAAAAAAAAAAItlzL68r3A93rUVPMeVPLqZA+q9qMoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIozzzcthwUECUhpRSlIwBbJRN6AOMAXSUR0CEBnhVENONdX2UKGgGaAloD0MISIld29unW0CUhpRSlGgVTegDaBZHQIQI1ShrWRR1fZQoaAZoCWgPQwhtAgzLn+1nQJSGlFKUaBVNeQJoFkdAhAlpQk5ZKXV9lChoBmgJaA9DCPje36C9mVxAlIaUUpRoFU3oA2gWR0CEDlWU8mrsdX2UKGgGaAloD0MI3bOu0XI0PkCUhpRSlGgVTREBaBZHQIQOeyLQ5WB1fZQoaAZoCWgPQwgwSPq0ijhZQJSGlFKUaBVN6ANoFkdAhC6UUoKD03V9lChoBmgJaA9DCDvCacGLriJAlIaUUpRoFU0SAWgWR0CENahY/3WXdX2UKGgGaAloD0MIWtk+5C0PLMCUhpRSlGgVTSUBaBZHQIQ12gJ1JUZ1fZQoaAZoCWgPQwg5tp4hHBMSwJSGlFKUaBVNAAFoFkdAhDjixeLNwHV9lChoBmgJaA9DCKNbr+lBDVlAlIaUUpRoFU3oA2gWR0CEh79w3o9tdX2UKGgGaAloD0MIADrMlxf3ZkCUhpRSlGgVTcYBaBZHQISJPYtg8bJ1fZQoaAZoCWgPQwgC2evdHz89QJSGlFKUaBVN6ANoFkdAhIpcqvvBrXV9lChoBmgJaA9DCPD8ogT97UHAlIaUUpRoFUvsaBZHQISP2x4Y77t1fZQoaAZoCWgPQwhMN4lBYKtGwJSGlFKUaBVL3WgWR0CEk5tY0VJudX2UKGgGaAloD0MIPBOaJJYsK8CUhpRSlGgVTQwBaBZHQISeLleWv8t1fZQoaAZoCWgPQwjXpNsSOeRqQJSGlFKUaBVNIAJoFkdAhKFGseXAunV9lChoBmgJaA9DCF/waU5eoVxAlIaUUpRoFU3oA2gWR0CEpicd5prUdX2UKGgGaAloD0MItcagE0IqYkCUhpRSlGgVTegDaBZHQISzGCEpRXR1fZQoaAZoCWgPQwjzyB8MPBhaQJSGlFKUaBVN6ANoFkdAhLhn1OCXhXV9lChoBmgJaA9DCJKXNbHAElxAlIaUUpRoFU3oA2gWR0CEuwf+0gKXdX2UKGgGaAloD0MICYfe4uHiV0CUhpRSlGgVTegDaBZHQIS+q2+fywx1fZQoaAZoCWgPQwhPstXllG5WQJSGlFKUaBVN6ANoFkdAhMJ+pXIU8HV9lChoBmgJaA9DCGIvFLAdzEFAlIaUUpRoFU1BAWgWR0CE0G94eLeidX2UKGgGaAloD0MI5X0czZF1XUCUhpRSlGgVTegDaBZHQITV44MnZ011fZQoaAZoCWgPQwhNMJxrmHxeQJSGlFKUaBVN6ANoFkdAhOVADJU5uXV9lChoBmgJaA9DCD25pkBm+FVAlIaUUpRoFU3oA2gWR0CFHUNnXd0rdX2UKGgGaAloD0MIuTMTDGezYECUhpRSlGgVTegDaBZHQIVzRL9MsYl1fZQoaAZoCWgPQwj0GVBvRvhUQJSGlFKUaBVN6ANoFkdAhXTWETQE6nV9lChoBmgJaA9DCGQ+INCZ01ZAlIaUUpRoFU3oA2gWR0CFdhzyz5XVdX2UKGgGaAloD0MIgPRNmgYgUUCUhpRSlGgVTegDaBZHQIV7zXSSeRR1fZQoaAZoCWgPQwgGSDSBIuthQJSGlFKUaBVN6ANoFkdAhX/o4uK4x3V9lChoBmgJaA9DCK66DtWUhVFAlIaUUpRoFU3oA2gWR0CFjZNbC79RdX2UKGgGaAloD0MImSoYldQwVkCUhpRSlGgVTegDaBZHQIWSd5nlGPR1fZQoaAZoCWgPQwhp5POKpyBbQJSGlFKUaBVN6ANoFkdAhZ7soMKCx3V9lChoBmgJaA9DCOP/jqhQpVNAlIaUUpRoFU3oA2gWR0CFpCU+LWI5dX2UKGgGaAloD0MIB7MJMCwAW0CUhpRSlGgVTegDaBZHQIWmv/cWTHN1fZQoaAZoCWgPQwgiiV5GMXJiQJSGlFKUaBVN6ANoFkdAhapEka/ATXV9lChoBmgJaA9DCIDUJk7uYV9AlIaUUpRoFU3oA2gWR0CFrd1f3N9qdX2UKGgGaAloD0MIpyVWRiNHYECUhpRSlGgVTegDaBZHQIW6MGxD9fl1fZQoaAZoCWgPQwjDf7qBAoFSQJSGlFKUaBVN6ANoFkdAhb7dv863iXV9lChoBmgJaA9DCL6ItmPqlF9AlIaUUpRoFU3oA2gWR0CFy6n889wFdX2UKGgGaAloD0MINX7hlSSfR8CUhpRSlGgVTWEBaBZHQIXkoMlTm4l1fZQoaAZoCWgPQwimKQKc3kBcQJSGlFKUaBVN6ANoFkdAhfz8YIjW1HV9lChoBmgJaA9DCFLt0/GYtV9AlIaUUpRoFU3oA2gWR0CGU0bXpW3jdX2UKGgGaAloD0MIuCOcFrymWkCUhpRSlGgVTegDaBZHQIZVElme18d1fZQoaAZoCWgPQwhuF5rrNLlcQJSGlFKUaBVN6ANoFkdAhlZ+OOsDGXV9lChoBmgJaA9DCJ3y6EZYrlhAlIaUUpRoFU3oA2gWR0CGXN2A5JbudX2UKGgGaAloD0MII72o3a9mVECUhpRSlGgVTegDaBZHQIZhTWZqmCR1fZQoaAZoCWgPQwjJVwIpsdxTQJSGlFKUaBVN6ANoFkdAhnCBa1TisHV9lChoBmgJaA9DCDf+RGVDY2BAlIaUUpRoFU3oA2gWR0CGdgnNPgvUdX2UKGgGaAloD0MIfnN/9bh9V0CUhpRSlGgVTegDaBZHQIaFMcjqv/11fZQoaAZoCWgPQwj7JHfYRAtaQJSGlFKUaBVN6ANoFkdAhotAdfb9InV9lChoBmgJaA9DCLk3v2GiE1lAlIaUUpRoFU3oA2gWR0CGjkKc/dIodX2UKGgGaAloD0MIxAWgUbo6W0CUhpRSlGgVTegDaBZHQIaSUXxe9jB1fZQoaAZoCWgPQwg/jBAebetVQJSGlFKUaBVN6ANoFkdAhqYWfkFOf3V9lChoBmgJaA9DCEGasWi6ymBAlIaUUpRoFU3oA2gWR0CGq5uUD+zddX2UKGgGaAloD0MICFVq9kCUXUCUhpRSlGgVTegDaBZHQIa61OGj9GZ1fZQoaAZoCWgPQwhmiGNd3PBnQJSGlFKUaBVNAwNoFkdAhsO8biqABnV9lChoBmgJaA9DCNALdy6MDlxAlIaUUpRoFU3oA2gWR0CG1kX/o7mudX2UKGgGaAloD0MIEtxI2SIxVUCUhpRSlGgVTegDaBZHQIdGjBMzuWt1fZQoaAZoCWgPQwgycasgBmBWQJSGlFKUaBVN6ANoFkdAh0hZpi7TUnV9lChoBmgJaA9DCKp+pfPhjlhAlIaUUpRoFU3oA2gWR0CHSeJF9a2XdX2UKGgGaAloD0MIZtmTwOZdV0CUhpRSlGgVTegDaBZHQIdQVB8hLXd1fZQoaAZoCWgPQwhMiLmkavpcQJSGlFKUaBVN6ANoFkdAh1TfbTMJQnV9lChoBmgJaA9DCJC8cyhD0FtAlIaUUpRoFU3oA2gWR0CHY9gqEvkBdX2UKGgGaAloD0MIXTRkPEqIXECUhpRSlGgVTegDaBZHQIdpMmnfl6t1fZQoaAZoCWgPQwgc0NIVbEdcQJSGlFKUaBVN6ANoFkdAh3frNwBHTnV9lChoBmgJaA9DCNz0Zz9Si19AlIaUUpRoFU3oA2gWR0CHffItDlYEdX2UKGgGaAloD0MIOutTjsn6N8CUhpRSlGgVTSkBaBZHQId+fEjxCpp1fZQoaAZoCWgPQwg/cmvSbcn6v5SGlFKUaBVNCAFoFkdAh3+Kcd5prXV9lChoBmgJaA9DCIlhhzHpZ15AlIaUUpRoFU3oA2gWR0CHgKSYgJTmdX2UKGgGaAloD0MI36Y/+5GkWECUhpRSlGgVTegDaBZHQIeEZbGFSKp1fZQoaAZoCWgPQwjmstE5P41cQJSGlFKUaBVN6ANoFkdAh5XaY3Ns33V9lChoBmgJaA9DCI+K/zuiu15AlIaUUpRoFU3oA2gWR0CHmztrKvFFdX2UKGgGaAloD0MIb4Pab+3lX0CUhpRSlGgVTegDaBZHQIepXMY/FBJ1fZQoaAZoCWgPQwigUiXK3uZZQJSGlFKUaBVN6ANoFkdAh7HNPHktE3V9lChoBmgJaA9DCORojqz8tGVAlIaUUpRoFU1yAmgWR0CHspegte2NdX2UKGgGaAloD0MIQInPnWCRV0CUhpRSlGgVTegDaBZHQIfDVwBHTZx1fZQoaAZoCWgPQwg8Mlab/5cswJSGlFKUaBVNQwFoFkdAh9Nzd1uBMHV9lChoBmgJaA9DCO53KAr0sFlAlIaUUpRoFU1sAmgWR0CH6ki1y/9HdX2UKGgGaAloD0MIsp/FUiQkW0CUhpRSlGgVTegDaBZHQIgyBLM9r451fZQoaAZoCWgPQwha8nhafhVdQJSGlFKUaBVN6ANoFkdAiD2Ab6xgRnV9lChoBmgJaA9DCOBkG7gDOF1AlIaUUpRoFU3oA2gWR0CITXdnkDISdX2UKGgGaAloD0MIV+pZEMqHXUCUhpRSlGgVTegDaBZHQIhS45zYEnt1fZQoaAZoCWgPQwgeigJ9IgpfQJSGlFKUaBVN6ANoFkdAiGJgV45cT3V9lChoBmgJaA9DCPTdrSxRTGBAlIaUUpRoFU3oA2gWR0CIaKYqoZQ6dX2UKGgGaAloD0MILQjlfRyDXECUhpRSlGgVTegDaBZHQIhpPepGWld1fZQoaAZoCWgPQwiaP6a1aftfQJSGlFKUaBVN6ANoFkdAiGuFzMibD3V9lChoBmgJaA9DCPp6vma56l1AlIaUUpRoFU3oA2gWR0CIb1jn3cpLdX2UKGgGaAloD0MIe5+qQoNPYUCUhpRSlGgVTbkCaBZHQIh64GpuMuR1fZQoaAZoCWgPQwgdOj3vRjpgQJSGlFKUaBVN6ANoFkdAiID3+MqBmXV9lChoBmgJaA9DCHQLXYlA9ew/lIaUUpRoFUvyaBZHQIiJcwco6S11fZQoaAZoCWgPQwgucHmsGRxfQJSGlFKUaBVN6ANoFkdAiJO8sMAmzHV9lChoBmgJaA9DCPoMqDcjsWBAlIaUUpRoFU3oA2gWR0CIm5SVnmJWdX2UKGgGaAloD0MIKA6g3/czU0CUhpRSlGgVTegDaBZHQIicT/XGwRp1fZQoaAZoCWgPQwgU7L/OTZvUP5SGlFKUaBVNIAFoFkdAiLhXHBDXv3V9lChoBmgJaA9DCPFIvDwdfmdAlIaUUpRoFU2GAmgWR0CIuOIrvsqsdX2UKGgGaAloD0MIJetwdJWZZUCUhpRSlGgVTegDaBZHQIi6mLxZuAJ1fZQoaAZoCWgPQwiUbHU5JUAvQJSGlFKUaBVNDwFoFkdAiMjC4SYgJXV9lChoBmgJaA9DCD7pRIKpm1hAlIaUUpRoFU3oA2gWR0CIz+i8FpwkdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}