dk-crazydiv
commited on
Commit
·
a18e08f
1
Parent(s):
a3d958b
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 201.80 +/- 14.46
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0a7382e320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0a7382e3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0a7382e440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0a7382e4d0>", "_build": "<function ActorCriticPolicy._build at 0x7f0a7382e560>", "forward": "<function ActorCriticPolicy.forward at 0x7f0a7382e5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0a7382e680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0a7382e710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0a7382e7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0a7382e830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0a7382e8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0a73874960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651726710.3496752, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBCBL4fE+U6bn7bO29W5bnsSpe8mkfLOgAAgD8AAIA/JKMEv5GHoz5Odss9p9Wbvn+E07yByRy9AAAAAAAAAACTBoo+hMSnPoKxnb3x1IK+JwdevQXazzsAAAAAAAAAAFow/r1IUd85nusrO1Z3rriKmKe72oaWOQAAgD8AAIA/uzuKvvvP6jsWgNk6abyFuDSCg72IEwC6AACAPwAAgD9Q3s4+NKGkPW7NB7u9zkK5ANeqPeUmijoAAIA/AACAP4ABXb32hFe6R3yxO9HynThNxOY5uJdYugAAgD8AAIA/WvYNvwo1Gj4GGeA8lBQBvqioGr3ulBM9AAAAAAAAAADmQMI9XI9euhC8SLxhmP+1hMsHO+bEZzUAAIA/AACAPyYsyz0fjbK5vo1+OWKGXjYL5ik64HKXuAAAgD8AAIA/4K9nvm8KOT/WbQG+7NqTvok3IL4C+d09AAAAAAAAAAD2dJe+YSWFvKryJTqaXFA41NDfPYrYQrkAAIA/AACAP/PHgz1cO1i6ZlbYOpq/pzXaNIO4Sx/3uQAAgD8AAIA/pgmPPeyB9bm7C6C680QdtWtX7TpDm7c5AACAPwAAgD8qrZI+yVx/P2NjFb3t5Xq+3UWCPb2wXLwAAAAAAAAAAItlzL68r3A93rUVPMeVPLqZA+q9qMoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIozzzcthwUECUhpRSlIwBbJRN6AOMAXSUR0CEBnhVENONdX2UKGgGaAloD0MISIld29unW0CUhpRSlGgVTegDaBZHQIQI1ShrWRR1fZQoaAZoCWgPQwhtAgzLn+1nQJSGlFKUaBVNeQJoFkdAhAlpQk5ZKXV9lChoBmgJaA9DCPje36C9mVxAlIaUUpRoFU3oA2gWR0CEDlWU8mrsdX2UKGgGaAloD0MI3bOu0XI0PkCUhpRSlGgVTREBaBZHQIQOeyLQ5WB1fZQoaAZoCWgPQwgwSPq0ijhZQJSGlFKUaBVN6ANoFkdAhC6UUoKD03V9lChoBmgJaA9DCDvCacGLriJAlIaUUpRoFU0SAWgWR0CENahY/3WXdX2UKGgGaAloD0MIWtk+5C0PLMCUhpRSlGgVTSUBaBZHQIQ12gJ1JUZ1fZQoaAZoCWgPQwg5tp4hHBMSwJSGlFKUaBVNAAFoFkdAhDjixeLNwHV9lChoBmgJaA9DCKNbr+lBDVlAlIaUUpRoFU3oA2gWR0CEh79w3o9tdX2UKGgGaAloD0MIADrMlxf3ZkCUhpRSlGgVTcYBaBZHQISJPYtg8bJ1fZQoaAZoCWgPQwgC2evdHz89QJSGlFKUaBVN6ANoFkdAhIpcqvvBrXV9lChoBmgJaA9DCPD8ogT97UHAlIaUUpRoFUvsaBZHQISP2x4Y77t1fZQoaAZoCWgPQwhMN4lBYKtGwJSGlFKUaBVL3WgWR0CEk5tY0VJudX2UKGgGaAloD0MIPBOaJJYsK8CUhpRSlGgVTQwBaBZHQISeLleWv8t1fZQoaAZoCWgPQwjXpNsSOeRqQJSGlFKUaBVNIAJoFkdAhKFGseXAunV9lChoBmgJaA9DCF/waU5eoVxAlIaUUpRoFU3oA2gWR0CEpicd5prUdX2UKGgGaAloD0MItcagE0IqYkCUhpRSlGgVTegDaBZHQISzGCEpRXR1fZQoaAZoCWgPQwjzyB8MPBhaQJSGlFKUaBVN6ANoFkdAhLhn1OCXhXV9lChoBmgJaA9DCJKXNbHAElxAlIaUUpRoFU3oA2gWR0CEuwf+0gKXdX2UKGgGaAloD0MICYfe4uHiV0CUhpRSlGgVTegDaBZHQIS+q2+fywx1fZQoaAZoCWgPQwhPstXllG5WQJSGlFKUaBVN6ANoFkdAhMJ+pXIU8HV9lChoBmgJaA9DCGIvFLAdzEFAlIaUUpRoFU1BAWgWR0CE0G94eLeidX2UKGgGaAloD0MI5X0czZF1XUCUhpRSlGgVTegDaBZHQITV44MnZ011fZQoaAZoCWgPQwhNMJxrmHxeQJSGlFKUaBVN6ANoFkdAhOVADJU5uXV9lChoBmgJaA9DCD25pkBm+FVAlIaUUpRoFU3oA2gWR0CFHUNnXd0rdX2UKGgGaAloD0MIuTMTDGezYECUhpRSlGgVTegDaBZHQIVzRL9MsYl1fZQoaAZoCWgPQwj0GVBvRvhUQJSGlFKUaBVN6ANoFkdAhXTWETQE6nV9lChoBmgJaA9DCGQ+INCZ01ZAlIaUUpRoFU3oA2gWR0CFdhzyz5XVdX2UKGgGaAloD0MIgPRNmgYgUUCUhpRSlGgVTegDaBZHQIV7zXSSeRR1fZQoaAZoCWgPQwgGSDSBIuthQJSGlFKUaBVN6ANoFkdAhX/o4uK4x3V9lChoBmgJaA9DCK66DtWUhVFAlIaUUpRoFU3oA2gWR0CFjZNbC79RdX2UKGgGaAloD0MImSoYldQwVkCUhpRSlGgVTegDaBZHQIWSd5nlGPR1fZQoaAZoCWgPQwhp5POKpyBbQJSGlFKUaBVN6ANoFkdAhZ7soMKCx3V9lChoBmgJaA9DCOP/jqhQpVNAlIaUUpRoFU3oA2gWR0CFpCU+LWI5dX2UKGgGaAloD0MIB7MJMCwAW0CUhpRSlGgVTegDaBZHQIWmv/cWTHN1fZQoaAZoCWgPQwgiiV5GMXJiQJSGlFKUaBVN6ANoFkdAhapEka/ATXV9lChoBmgJaA9DCIDUJk7uYV9AlIaUUpRoFU3oA2gWR0CFrd1f3N9qdX2UKGgGaAloD0MIpyVWRiNHYECUhpRSlGgVTegDaBZHQIW6MGxD9fl1fZQoaAZoCWgPQwjDf7qBAoFSQJSGlFKUaBVN6ANoFkdAhb7dv863iXV9lChoBmgJaA9DCL6ItmPqlF9AlIaUUpRoFU3oA2gWR0CFy6n889wFdX2UKGgGaAloD0MINX7hlSSfR8CUhpRSlGgVTWEBaBZHQIXkoMlTm4l1fZQoaAZoCWgPQwimKQKc3kBcQJSGlFKUaBVN6ANoFkdAhfz8YIjW1HV9lChoBmgJaA9DCFLt0/GYtV9AlIaUUpRoFU3oA2gWR0CGU0bXpW3jdX2UKGgGaAloD0MIuCOcFrymWkCUhpRSlGgVTegDaBZHQIZVElme18d1fZQoaAZoCWgPQwhuF5rrNLlcQJSGlFKUaBVN6ANoFkdAhlZ+OOsDGXV9lChoBmgJaA9DCJ3y6EZYrlhAlIaUUpRoFU3oA2gWR0CGXN2A5JbudX2UKGgGaAloD0MII72o3a9mVECUhpRSlGgVTegDaBZHQIZhTWZqmCR1fZQoaAZoCWgPQwjJVwIpsdxTQJSGlFKUaBVN6ANoFkdAhnCBa1TisHV9lChoBmgJaA9DCDf+RGVDY2BAlIaUUpRoFU3oA2gWR0CGdgnNPgvUdX2UKGgGaAloD0MIfnN/9bh9V0CUhpRSlGgVTegDaBZHQIaFMcjqv/11fZQoaAZoCWgPQwj7JHfYRAtaQJSGlFKUaBVN6ANoFkdAhotAdfb9InV9lChoBmgJaA9DCLk3v2GiE1lAlIaUUpRoFU3oA2gWR0CGjkKc/dIodX2UKGgGaAloD0MIxAWgUbo6W0CUhpRSlGgVTegDaBZHQIaSUXxe9jB1fZQoaAZoCWgPQwg/jBAebetVQJSGlFKUaBVN6ANoFkdAhqYWfkFOf3V9lChoBmgJaA9DCEGasWi6ymBAlIaUUpRoFU3oA2gWR0CGq5uUD+zddX2UKGgGaAloD0MICFVq9kCUXUCUhpRSlGgVTegDaBZHQIa61OGj9GZ1fZQoaAZoCWgPQwhmiGNd3PBnQJSGlFKUaBVNAwNoFkdAhsO8biqABnV9lChoBmgJaA9DCNALdy6MDlxAlIaUUpRoFU3oA2gWR0CG1kX/o7mudX2UKGgGaAloD0MIEtxI2SIxVUCUhpRSlGgVTegDaBZHQIdGjBMzuWt1fZQoaAZoCWgPQwgycasgBmBWQJSGlFKUaBVN6ANoFkdAh0hZpi7TUnV9lChoBmgJaA9DCKp+pfPhjlhAlIaUUpRoFU3oA2gWR0CHSeJF9a2XdX2UKGgGaAloD0MIZtmTwOZdV0CUhpRSlGgVTegDaBZHQIdQVB8hLXd1fZQoaAZoCWgPQwhMiLmkavpcQJSGlFKUaBVN6ANoFkdAh1TfbTMJQnV9lChoBmgJaA9DCJC8cyhD0FtAlIaUUpRoFU3oA2gWR0CHY9gqEvkBdX2UKGgGaAloD0MIXTRkPEqIXECUhpRSlGgVTegDaBZHQIdpMmnfl6t1fZQoaAZoCWgPQwgc0NIVbEdcQJSGlFKUaBVN6ANoFkdAh3frNwBHTnV9lChoBmgJaA9DCNz0Zz9Si19AlIaUUpRoFU3oA2gWR0CHffItDlYEdX2UKGgGaAloD0MIOutTjsn6N8CUhpRSlGgVTSkBaBZHQId+fEjxCpp1fZQoaAZoCWgPQwg/cmvSbcn6v5SGlFKUaBVNCAFoFkdAh3+Kcd5prXV9lChoBmgJaA9DCIlhhzHpZ15AlIaUUpRoFU3oA2gWR0CHgKSYgJTmdX2UKGgGaAloD0MI36Y/+5GkWECUhpRSlGgVTegDaBZHQIeEZbGFSKp1fZQoaAZoCWgPQwjmstE5P41cQJSGlFKUaBVN6ANoFkdAh5XaY3Ns33V9lChoBmgJaA9DCI+K/zuiu15AlIaUUpRoFU3oA2gWR0CHmztrKvFFdX2UKGgGaAloD0MIb4Pab+3lX0CUhpRSlGgVTegDaBZHQIepXMY/FBJ1fZQoaAZoCWgPQwigUiXK3uZZQJSGlFKUaBVN6ANoFkdAh7HNPHktE3V9lChoBmgJaA9DCORojqz8tGVAlIaUUpRoFU1yAmgWR0CHspegte2NdX2UKGgGaAloD0MIQInPnWCRV0CUhpRSlGgVTegDaBZHQIfDVwBHTZx1fZQoaAZoCWgPQwg8Mlab/5cswJSGlFKUaBVNQwFoFkdAh9Nzd1uBMHV9lChoBmgJaA9DCO53KAr0sFlAlIaUUpRoFU1sAmgWR0CH6ki1y/9HdX2UKGgGaAloD0MIsp/FUiQkW0CUhpRSlGgVTegDaBZHQIgyBLM9r451fZQoaAZoCWgPQwha8nhafhVdQJSGlFKUaBVN6ANoFkdAiD2Ab6xgRnV9lChoBmgJaA9DCOBkG7gDOF1AlIaUUpRoFU3oA2gWR0CITXdnkDISdX2UKGgGaAloD0MIV+pZEMqHXUCUhpRSlGgVTegDaBZHQIhS45zYEnt1fZQoaAZoCWgPQwgeigJ9IgpfQJSGlFKUaBVN6ANoFkdAiGJgV45cT3V9lChoBmgJaA9DCPTdrSxRTGBAlIaUUpRoFU3oA2gWR0CIaKYqoZQ6dX2UKGgGaAloD0MILQjlfRyDXECUhpRSlGgVTegDaBZHQIhpPepGWld1fZQoaAZoCWgPQwiaP6a1aftfQJSGlFKUaBVN6ANoFkdAiGuFzMibD3V9lChoBmgJaA9DCPp6vma56l1AlIaUUpRoFU3oA2gWR0CIb1jn3cpLdX2UKGgGaAloD0MIe5+qQoNPYUCUhpRSlGgVTbkCaBZHQIh64GpuMuR1fZQoaAZoCWgPQwgdOj3vRjpgQJSGlFKUaBVN6ANoFkdAiID3+MqBmXV9lChoBmgJaA9DCHQLXYlA9ew/lIaUUpRoFUvyaBZHQIiJcwco6S11fZQoaAZoCWgPQwgucHmsGRxfQJSGlFKUaBVN6ANoFkdAiJO8sMAmzHV9lChoBmgJaA9DCPoMqDcjsWBAlIaUUpRoFU3oA2gWR0CIm5SVnmJWdX2UKGgGaAloD0MIKA6g3/czU0CUhpRSlGgVTegDaBZHQIicT/XGwRp1fZQoaAZoCWgPQwgU7L/OTZvUP5SGlFKUaBVNIAFoFkdAiLhXHBDXv3V9lChoBmgJaA9DCPFIvDwdfmdAlIaUUpRoFU2GAmgWR0CIuOIrvsqsdX2UKGgGaAloD0MIJetwdJWZZUCUhpRSlGgVTegDaBZHQIi6mLxZuAJ1fZQoaAZoCWgPQwiUbHU5JUAvQJSGlFKUaBVNDwFoFkdAiMjC4SYgJXV9lChoBmgJaA9DCD7pRIKpm1hAlIaUUpRoFU3oA2gWR0CIz+i8FpwkdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e323ff258cd52be8398d79cb733c056b021d0e2060481f6fd6a1776c113afad
|
3 |
+
size 144044
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0a7382e320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0a7382e3b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0a7382e440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0a7382e4d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0a7382e560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0a7382e5f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0a7382e680>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0a7382e710>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0a7382e7a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0a7382e830>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0a7382e8c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f0a73874960>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651726710.3496752,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBCBL4fE+U6bn7bO29W5bnsSpe8mkfLOgAAgD8AAIA/JKMEv5GHoz5Odss9p9Wbvn+E07yByRy9AAAAAAAAAACTBoo+hMSnPoKxnb3x1IK+JwdevQXazzsAAAAAAAAAAFow/r1IUd85nusrO1Z3rriKmKe72oaWOQAAgD8AAIA/uzuKvvvP6jsWgNk6abyFuDSCg72IEwC6AACAPwAAgD9Q3s4+NKGkPW7NB7u9zkK5ANeqPeUmijoAAIA/AACAP4ABXb32hFe6R3yxO9HynThNxOY5uJdYugAAgD8AAIA/WvYNvwo1Gj4GGeA8lBQBvqioGr3ulBM9AAAAAAAAAADmQMI9XI9euhC8SLxhmP+1hMsHO+bEZzUAAIA/AACAPyYsyz0fjbK5vo1+OWKGXjYL5ik64HKXuAAAgD8AAIA/4K9nvm8KOT/WbQG+7NqTvok3IL4C+d09AAAAAAAAAAD2dJe+YSWFvKryJTqaXFA41NDfPYrYQrkAAIA/AACAP/PHgz1cO1i6ZlbYOpq/pzXaNIO4Sx/3uQAAgD8AAIA/pgmPPeyB9bm7C6C680QdtWtX7TpDm7c5AACAPwAAgD8qrZI+yVx/P2NjFb3t5Xq+3UWCPb2wXLwAAAAAAAAAAItlzL68r3A93rUVPMeVPLqZA+q9qMoluwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIozzzcthwUECUhpRSlIwBbJRN6AOMAXSUR0CEBnhVENONdX2UKGgGaAloD0MISIld29unW0CUhpRSlGgVTegDaBZHQIQI1ShrWRR1fZQoaAZoCWgPQwhtAgzLn+1nQJSGlFKUaBVNeQJoFkdAhAlpQk5ZKXV9lChoBmgJaA9DCPje36C9mVxAlIaUUpRoFU3oA2gWR0CEDlWU8mrsdX2UKGgGaAloD0MI3bOu0XI0PkCUhpRSlGgVTREBaBZHQIQOeyLQ5WB1fZQoaAZoCWgPQwgwSPq0ijhZQJSGlFKUaBVN6ANoFkdAhC6UUoKD03V9lChoBmgJaA9DCDvCacGLriJAlIaUUpRoFU0SAWgWR0CENahY/3WXdX2UKGgGaAloD0MIWtk+5C0PLMCUhpRSlGgVTSUBaBZHQIQ12gJ1JUZ1fZQoaAZoCWgPQwg5tp4hHBMSwJSGlFKUaBVNAAFoFkdAhDjixeLNwHV9lChoBmgJaA9DCKNbr+lBDVlAlIaUUpRoFU3oA2gWR0CEh79w3o9tdX2UKGgGaAloD0MIADrMlxf3ZkCUhpRSlGgVTcYBaBZHQISJPYtg8bJ1fZQoaAZoCWgPQwgC2evdHz89QJSGlFKUaBVN6ANoFkdAhIpcqvvBrXV9lChoBmgJaA9DCPD8ogT97UHAlIaUUpRoFUvsaBZHQISP2x4Y77t1fZQoaAZoCWgPQwhMN4lBYKtGwJSGlFKUaBVL3WgWR0CEk5tY0VJudX2UKGgGaAloD0MIPBOaJJYsK8CUhpRSlGgVTQwBaBZHQISeLleWv8t1fZQoaAZoCWgPQwjXpNsSOeRqQJSGlFKUaBVNIAJoFkdAhKFGseXAunV9lChoBmgJaA9DCF/waU5eoVxAlIaUUpRoFU3oA2gWR0CEpicd5prUdX2UKGgGaAloD0MItcagE0IqYkCUhpRSlGgVTegDaBZHQISzGCEpRXR1fZQoaAZoCWgPQwjzyB8MPBhaQJSGlFKUaBVN6ANoFkdAhLhn1OCXhXV9lChoBmgJaA9DCJKXNbHAElxAlIaUUpRoFU3oA2gWR0CEuwf+0gKXdX2UKGgGaAloD0MICYfe4uHiV0CUhpRSlGgVTegDaBZHQIS+q2+fywx1fZQoaAZoCWgPQwhPstXllG5WQJSGlFKUaBVN6ANoFkdAhMJ+pXIU8HV9lChoBmgJaA9DCGIvFLAdzEFAlIaUUpRoFU1BAWgWR0CE0G94eLeidX2UKGgGaAloD0MI5X0czZF1XUCUhpRSlGgVTegDaBZHQITV44MnZ011fZQoaAZoCWgPQwhNMJxrmHxeQJSGlFKUaBVN6ANoFkdAhOVADJU5uXV9lChoBmgJaA9DCD25pkBm+FVAlIaUUpRoFU3oA2gWR0CFHUNnXd0rdX2UKGgGaAloD0MIuTMTDGezYECUhpRSlGgVTegDaBZHQIVzRL9MsYl1fZQoaAZoCWgPQwj0GVBvRvhUQJSGlFKUaBVN6ANoFkdAhXTWETQE6nV9lChoBmgJaA9DCGQ+INCZ01ZAlIaUUpRoFU3oA2gWR0CFdhzyz5XVdX2UKGgGaAloD0MIgPRNmgYgUUCUhpRSlGgVTegDaBZHQIV7zXSSeRR1fZQoaAZoCWgPQwgGSDSBIuthQJSGlFKUaBVN6ANoFkdAhX/o4uK4x3V9lChoBmgJaA9DCK66DtWUhVFAlIaUUpRoFU3oA2gWR0CFjZNbC79RdX2UKGgGaAloD0MImSoYldQwVkCUhpRSlGgVTegDaBZHQIWSd5nlGPR1fZQoaAZoCWgPQwhp5POKpyBbQJSGlFKUaBVN6ANoFkdAhZ7soMKCx3V9lChoBmgJaA9DCOP/jqhQpVNAlIaUUpRoFU3oA2gWR0CFpCU+LWI5dX2UKGgGaAloD0MIB7MJMCwAW0CUhpRSlGgVTegDaBZHQIWmv/cWTHN1fZQoaAZoCWgPQwgiiV5GMXJiQJSGlFKUaBVN6ANoFkdAhapEka/ATXV9lChoBmgJaA9DCIDUJk7uYV9AlIaUUpRoFU3oA2gWR0CFrd1f3N9qdX2UKGgGaAloD0MIpyVWRiNHYECUhpRSlGgVTegDaBZHQIW6MGxD9fl1fZQoaAZoCWgPQwjDf7qBAoFSQJSGlFKUaBVN6ANoFkdAhb7dv863iXV9lChoBmgJaA9DCL6ItmPqlF9AlIaUUpRoFU3oA2gWR0CFy6n889wFdX2UKGgGaAloD0MINX7hlSSfR8CUhpRSlGgVTWEBaBZHQIXkoMlTm4l1fZQoaAZoCWgPQwimKQKc3kBcQJSGlFKUaBVN6ANoFkdAhfz8YIjW1HV9lChoBmgJaA9DCFLt0/GYtV9AlIaUUpRoFU3oA2gWR0CGU0bXpW3jdX2UKGgGaAloD0MIuCOcFrymWkCUhpRSlGgVTegDaBZHQIZVElme18d1fZQoaAZoCWgPQwhuF5rrNLlcQJSGlFKUaBVN6ANoFkdAhlZ+OOsDGXV9lChoBmgJaA9DCJ3y6EZYrlhAlIaUUpRoFU3oA2gWR0CGXN2A5JbudX2UKGgGaAloD0MII72o3a9mVECUhpRSlGgVTegDaBZHQIZhTWZqmCR1fZQoaAZoCWgPQwjJVwIpsdxTQJSGlFKUaBVN6ANoFkdAhnCBa1TisHV9lChoBmgJaA9DCDf+RGVDY2BAlIaUUpRoFU3oA2gWR0CGdgnNPgvUdX2UKGgGaAloD0MIfnN/9bh9V0CUhpRSlGgVTegDaBZHQIaFMcjqv/11fZQoaAZoCWgPQwj7JHfYRAtaQJSGlFKUaBVN6ANoFkdAhotAdfb9InV9lChoBmgJaA9DCLk3v2GiE1lAlIaUUpRoFU3oA2gWR0CGjkKc/dIodX2UKGgGaAloD0MIxAWgUbo6W0CUhpRSlGgVTegDaBZHQIaSUXxe9jB1fZQoaAZoCWgPQwg/jBAebetVQJSGlFKUaBVN6ANoFkdAhqYWfkFOf3V9lChoBmgJaA9DCEGasWi6ymBAlIaUUpRoFU3oA2gWR0CGq5uUD+zddX2UKGgGaAloD0MICFVq9kCUXUCUhpRSlGgVTegDaBZHQIa61OGj9GZ1fZQoaAZoCWgPQwhmiGNd3PBnQJSGlFKUaBVNAwNoFkdAhsO8biqABnV9lChoBmgJaA9DCNALdy6MDlxAlIaUUpRoFU3oA2gWR0CG1kX/o7mudX2UKGgGaAloD0MIEtxI2SIxVUCUhpRSlGgVTegDaBZHQIdGjBMzuWt1fZQoaAZoCWgPQwgycasgBmBWQJSGlFKUaBVN6ANoFkdAh0hZpi7TUnV9lChoBmgJaA9DCKp+pfPhjlhAlIaUUpRoFU3oA2gWR0CHSeJF9a2XdX2UKGgGaAloD0MIZtmTwOZdV0CUhpRSlGgVTegDaBZHQIdQVB8hLXd1fZQoaAZoCWgPQwhMiLmkavpcQJSGlFKUaBVN6ANoFkdAh1TfbTMJQnV9lChoBmgJaA9DCJC8cyhD0FtAlIaUUpRoFU3oA2gWR0CHY9gqEvkBdX2UKGgGaAloD0MIXTRkPEqIXECUhpRSlGgVTegDaBZHQIdpMmnfl6t1fZQoaAZoCWgPQwgc0NIVbEdcQJSGlFKUaBVN6ANoFkdAh3frNwBHTnV9lChoBmgJaA9DCNz0Zz9Si19AlIaUUpRoFU3oA2gWR0CHffItDlYEdX2UKGgGaAloD0MIOutTjsn6N8CUhpRSlGgVTSkBaBZHQId+fEjxCpp1fZQoaAZoCWgPQwg/cmvSbcn6v5SGlFKUaBVNCAFoFkdAh3+Kcd5prXV9lChoBmgJaA9DCIlhhzHpZ15AlIaUUpRoFU3oA2gWR0CHgKSYgJTmdX2UKGgGaAloD0MI36Y/+5GkWECUhpRSlGgVTegDaBZHQIeEZbGFSKp1fZQoaAZoCWgPQwjmstE5P41cQJSGlFKUaBVN6ANoFkdAh5XaY3Ns33V9lChoBmgJaA9DCI+K/zuiu15AlIaUUpRoFU3oA2gWR0CHmztrKvFFdX2UKGgGaAloD0MIb4Pab+3lX0CUhpRSlGgVTegDaBZHQIepXMY/FBJ1fZQoaAZoCWgPQwigUiXK3uZZQJSGlFKUaBVN6ANoFkdAh7HNPHktE3V9lChoBmgJaA9DCORojqz8tGVAlIaUUpRoFU1yAmgWR0CHspegte2NdX2UKGgGaAloD0MIQInPnWCRV0CUhpRSlGgVTegDaBZHQIfDVwBHTZx1fZQoaAZoCWgPQwg8Mlab/5cswJSGlFKUaBVNQwFoFkdAh9Nzd1uBMHV9lChoBmgJaA9DCO53KAr0sFlAlIaUUpRoFU1sAmgWR0CH6ki1y/9HdX2UKGgGaAloD0MIsp/FUiQkW0CUhpRSlGgVTegDaBZHQIgyBLM9r451fZQoaAZoCWgPQwha8nhafhVdQJSGlFKUaBVN6ANoFkdAiD2Ab6xgRnV9lChoBmgJaA9DCOBkG7gDOF1AlIaUUpRoFU3oA2gWR0CITXdnkDISdX2UKGgGaAloD0MIV+pZEMqHXUCUhpRSlGgVTegDaBZHQIhS45zYEnt1fZQoaAZoCWgPQwgeigJ9IgpfQJSGlFKUaBVN6ANoFkdAiGJgV45cT3V9lChoBmgJaA9DCPTdrSxRTGBAlIaUUpRoFU3oA2gWR0CIaKYqoZQ6dX2UKGgGaAloD0MILQjlfRyDXECUhpRSlGgVTegDaBZHQIhpPepGWld1fZQoaAZoCWgPQwiaP6a1aftfQJSGlFKUaBVN6ANoFkdAiGuFzMibD3V9lChoBmgJaA9DCPp6vma56l1AlIaUUpRoFU3oA2gWR0CIb1jn3cpLdX2UKGgGaAloD0MIe5+qQoNPYUCUhpRSlGgVTbkCaBZHQIh64GpuMuR1fZQoaAZoCWgPQwgdOj3vRjpgQJSGlFKUaBVN6ANoFkdAiID3+MqBmXV9lChoBmgJaA9DCHQLXYlA9ew/lIaUUpRoFUvyaBZHQIiJcwco6S11fZQoaAZoCWgPQwgucHmsGRxfQJSGlFKUaBVN6ANoFkdAiJO8sMAmzHV9lChoBmgJaA9DCPoMqDcjsWBAlIaUUpRoFU3oA2gWR0CIm5SVnmJWdX2UKGgGaAloD0MIKA6g3/czU0CUhpRSlGgVTegDaBZHQIicT/XGwRp1fZQoaAZoCWgPQwgU7L/OTZvUP5SGlFKUaBVNIAFoFkdAiLhXHBDXv3V9lChoBmgJaA9DCPFIvDwdfmdAlIaUUpRoFU2GAmgWR0CIuOIrvsqsdX2UKGgGaAloD0MIJetwdJWZZUCUhpRSlGgVTegDaBZHQIi6mLxZuAJ1fZQoaAZoCWgPQwiUbHU5JUAvQJSGlFKUaBVNDwFoFkdAiMjC4SYgJXV9lChoBmgJaA9DCD7pRIKpm1hAlIaUUpRoFU3oA2gWR0CIz+i8FpwkdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:878bddca499d695c0960fa2f533b4aa3d1147e3274705d5398c00263ab65e3ad
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa51b08e5664a85bf65c46705e3983243e7e2c7250bff0d2a695938db40df7b2
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbe328e78d51cfb3dce461a220c7e54eab85c76ffad8b38c36031a69664c560b
|
3 |
+
size 267592
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 201.80340821809062, "std_reward": 14.458942205454775, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T05:13:41.387600"}
|