--- metrics: - precision - recall - f1 - accuracy model-index: - name: logs results: [] --- # logs - Loss: 0.0008 - Precision: 0.9900 - Recall: 0.995 - F1: 0.9925 - Accuracy: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 44 | 0.0039 | 0.9701 | 0.975 | 0.9726 | 0.9991 | | No log | 2.0 | 88 | 0.0018 | 0.8744 | 0.94 | 0.9060 | 0.9995 | | No log | 3.0 | 132 | 0.0011 | 0.9559 | 0.975 | 0.9653 | 0.9998 | | No log | 4.0 | 176 | 0.0008 | 0.9900 | 0.995 | 0.9925 | 0.9999 | | No log | 5.0 | 220 | 0.0007 | 0.9803 | 0.995 | 0.9876 | 0.9999 | | No log | 6.0 | 264 | 0.0007 | 0.9851 | 0.995 | 0.9900 | 0.9999 | | No log | 7.0 | 308 | 0.0007 | 0.9900 | 0.995 | 0.9925 | 0.9999 | | No log | 8.0 | 352 | 0.0007 | 0.9803 | 0.995 | 0.9876 | 0.9999 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.0.1 - Datasets 2.19.1 - Tokenizers 0.19.1