sanchit-gandhi commited on
Commit
c1b8d28
·
verified ·
1 Parent(s): fea2cda

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - audio
6
+ - automatic-speech-recognition
7
+ license: mit
8
+ ---
9
+
10
+ # Distil-Whisper: distil-large-v3 for OpenAI Whisper
11
+
12
+ This repository contains the model weights for [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
13
+ converted to [OpenAI Whisper](https://github.com/openai/whisper) format.
14
+
15
+ Compared to previous Distil-Whisper releases, distil-large-v3 is specifically designed to give one-to-one equivalence
16
+ with the OpenAI Whisper long-form transcription algorithm. In our benchmark over 4 out-of-distribution datasets, distil-large-v3
17
+ outperformed distil-large-v2 by 5% WER average. Thus, you can expect significant performance gains by switching to this
18
+ latest checkpoint.
19
+
20
+ ## Usage
21
+
22
+ To use the model in the original Whisper format, first ensure you have the [`openai-whisper`](https://pypi.org/project/openai-whisper/) package installed.
23
+ For this example, we'll also install 🤗 Datasets to load a toy audio dataset from the Hugging Face Hub:
24
+
25
+ ```bash
26
+ pip install --upgrade pip
27
+ pip install --upgrade openai-whisper datasets[audio]
28
+ ```
29
+
30
+ The following code-snippet demonstrates how to transcribe a sample file from the LibriSpeech dataset loaded using
31
+ 🤗 Datasets:
32
+
33
+ ```python
34
+ from huggingface_hub import hf_hub_download
35
+ from datasets import load_dataset
36
+ from whisper import load_model, transcribe
37
+
38
+ model_path = hf_hub_download(repo_id="distil-whisper/distil-large-v3-openai", filename="model.bin")
39
+ model = load_model(model_path)
40
+
41
+ dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
42
+ sample = dataset[0]["audio"]["path"]
43
+
44
+ pred_out = transcribe(model, audio=sample)
45
+ print(pred_out["text"])
46
+ ```
47
+
48
+ Note that the model weights will be downloaded and saved to your cache the first time you run the example. Subsequently,
49
+ you can re-use the same example, and the weights will be loaded directly from your cache without having to download them
50
+ again.
51
+
52
+ To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
53
+
54
+ ```python
55
+ pred_out = transcribe(model, audio="audio.mp3")
56
+ ```
57
+
58
+ ## Model Details
59
+
60
+ For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
61
+
62
+ ## License
63
+
64
+ Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
65
+
66
+ ## Citation
67
+
68
+ If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
69
+ ```
70
+ @misc{gandhi2023distilwhisper,
71
+ title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
72
+ author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
73
+ year={2023},
74
+ eprint={2311.00430},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.CL}
77
+ }
78
+ ```