--- base_model: nateraw/vit-age-classifier tags: - generated_from_trainer datasets: - fair_face metrics: - accuracy model-index: - name: image_age_classification results: - task: name: Image Classification type: image-classification dataset: name: fair_face type: fair_face config: '0.25' split: train[:10000] args: '0.25' metrics: - name: Accuracy type: accuracy value: 0.5965 --- # image_age_classification This model is a fine-tuned version of [nateraw/vit-age-classifier](https://huggingface.co/nateraw/vit-age-classifier) on the fair_face dataset. It achieves the following results on the evaluation set: - Loss: 0.9479 - Accuracy: 0.5965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0425 | 1.0 | 125 | 0.9358 | 0.6035 | | 0.8553 | 2.0 | 250 | 0.9411 | 0.5905 | | 0.8872 | 3.0 | 375 | 0.9626 | 0.6035 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3