--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.8464730290456431 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3266 - Accuracy: 0.8465 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2941 | 1.0 | 17 | 1.1717 | 0.4689 | | 1.0655 | 2.0 | 34 | 0.9397 | 0.5560 | | 0.8008 | 3.0 | 51 | 0.6153 | 0.7303 | | 0.7204 | 4.0 | 68 | 0.5665 | 0.7427 | | 0.6931 | 5.0 | 85 | 0.4670 | 0.7801 | | 0.6277 | 6.0 | 102 | 0.4328 | 0.8465 | | 0.5689 | 7.0 | 119 | 0.4078 | 0.8174 | | 0.6103 | 8.0 | 136 | 0.4060 | 0.8091 | | 0.5501 | 9.0 | 153 | 0.4842 | 0.7884 | | 0.6018 | 10.0 | 170 | 0.3780 | 0.8423 | | 0.5668 | 11.0 | 187 | 0.3551 | 0.8631 | | 0.5192 | 12.0 | 204 | 0.4514 | 0.8216 | | 0.5133 | 13.0 | 221 | 0.3598 | 0.8174 | | 0.5753 | 14.0 | 238 | 0.4172 | 0.8091 | | 0.4833 | 15.0 | 255 | 0.4685 | 0.8050 | | 0.5546 | 16.0 | 272 | 0.4474 | 0.7842 | | 0.5179 | 17.0 | 289 | 0.4570 | 0.7884 | | 0.5017 | 18.0 | 306 | 0.4218 | 0.8050 | | 0.4808 | 19.0 | 323 | 0.4094 | 0.8050 | | 0.4708 | 20.0 | 340 | 0.4693 | 0.7759 | | 0.5033 | 21.0 | 357 | 0.3141 | 0.8672 | | 0.4859 | 22.0 | 374 | 0.3687 | 0.8257 | | 0.516 | 23.0 | 391 | 0.3819 | 0.8216 | | 0.4822 | 24.0 | 408 | 0.3391 | 0.8506 | | 0.4748 | 25.0 | 425 | 0.3281 | 0.8506 | | 0.4914 | 26.0 | 442 | 0.3308 | 0.8631 | | 0.4354 | 27.0 | 459 | 0.3859 | 0.8133 | | 0.4297 | 28.0 | 476 | 0.3761 | 0.8133 | | 0.4747 | 29.0 | 493 | 0.2914 | 0.8672 | | 0.4395 | 30.0 | 510 | 0.3025 | 0.8548 | | 0.4279 | 31.0 | 527 | 0.3314 | 0.8506 | | 0.4327 | 32.0 | 544 | 0.4626 | 0.7842 | | 0.446 | 33.0 | 561 | 0.3499 | 0.8382 | | 0.4011 | 34.0 | 578 | 0.3408 | 0.8465 | | 0.4418 | 35.0 | 595 | 0.3159 | 0.8589 | | 0.484 | 36.0 | 612 | 0.3130 | 0.8548 | | 0.4119 | 37.0 | 629 | 0.2899 | 0.8589 | | 0.4453 | 38.0 | 646 | 0.3200 | 0.8465 | | 0.4074 | 39.0 | 663 | 0.3493 | 0.8465 | | 0.3937 | 40.0 | 680 | 0.3003 | 0.8672 | | 0.4222 | 41.0 | 697 | 0.3547 | 0.8299 | | 0.3922 | 42.0 | 714 | 0.3206 | 0.8589 | | 0.3973 | 43.0 | 731 | 0.4074 | 0.8133 | | 0.4118 | 44.0 | 748 | 0.3147 | 0.8589 | | 0.4088 | 45.0 | 765 | 0.3393 | 0.8506 | | 0.3635 | 46.0 | 782 | 0.3584 | 0.8257 | | 0.403 | 47.0 | 799 | 0.3240 | 0.8506 | | 0.3943 | 48.0 | 816 | 0.3536 | 0.8216 | | 0.4085 | 49.0 | 833 | 0.3270 | 0.8465 | | 0.3865 | 50.0 | 850 | 0.3266 | 0.8465 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1