File size: 4,833 Bytes
3a0df0f
 
 
 
bbd3546
 
3a0df0f
 
 
 
bbd3546
 
 
 
 
 
 
 
 
 
 
 
3a0df0f
 
 
 
 
 
 
bbd3546
3a0df0f
bbd3546
 
3a0df0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd3546
3a0df0f
 
 
 
 
bbd3546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a0df0f
 
 
 
 
 
bbd3546
3a0df0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8464730290456431
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3266
- Accuracy: 0.8465

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.2941        | 1.0   | 17   | 1.1717          | 0.4689   |
| 1.0655        | 2.0   | 34   | 0.9397          | 0.5560   |
| 0.8008        | 3.0   | 51   | 0.6153          | 0.7303   |
| 0.7204        | 4.0   | 68   | 0.5665          | 0.7427   |
| 0.6931        | 5.0   | 85   | 0.4670          | 0.7801   |
| 0.6277        | 6.0   | 102  | 0.4328          | 0.8465   |
| 0.5689        | 7.0   | 119  | 0.4078          | 0.8174   |
| 0.6103        | 8.0   | 136  | 0.4060          | 0.8091   |
| 0.5501        | 9.0   | 153  | 0.4842          | 0.7884   |
| 0.6018        | 10.0  | 170  | 0.3780          | 0.8423   |
| 0.5668        | 11.0  | 187  | 0.3551          | 0.8631   |
| 0.5192        | 12.0  | 204  | 0.4514          | 0.8216   |
| 0.5133        | 13.0  | 221  | 0.3598          | 0.8174   |
| 0.5753        | 14.0  | 238  | 0.4172          | 0.8091   |
| 0.4833        | 15.0  | 255  | 0.4685          | 0.8050   |
| 0.5546        | 16.0  | 272  | 0.4474          | 0.7842   |
| 0.5179        | 17.0  | 289  | 0.4570          | 0.7884   |
| 0.5017        | 18.0  | 306  | 0.4218          | 0.8050   |
| 0.4808        | 19.0  | 323  | 0.4094          | 0.8050   |
| 0.4708        | 20.0  | 340  | 0.4693          | 0.7759   |
| 0.5033        | 21.0  | 357  | 0.3141          | 0.8672   |
| 0.4859        | 22.0  | 374  | 0.3687          | 0.8257   |
| 0.516         | 23.0  | 391  | 0.3819          | 0.8216   |
| 0.4822        | 24.0  | 408  | 0.3391          | 0.8506   |
| 0.4748        | 25.0  | 425  | 0.3281          | 0.8506   |
| 0.4914        | 26.0  | 442  | 0.3308          | 0.8631   |
| 0.4354        | 27.0  | 459  | 0.3859          | 0.8133   |
| 0.4297        | 28.0  | 476  | 0.3761          | 0.8133   |
| 0.4747        | 29.0  | 493  | 0.2914          | 0.8672   |
| 0.4395        | 30.0  | 510  | 0.3025          | 0.8548   |
| 0.4279        | 31.0  | 527  | 0.3314          | 0.8506   |
| 0.4327        | 32.0  | 544  | 0.4626          | 0.7842   |
| 0.446         | 33.0  | 561  | 0.3499          | 0.8382   |
| 0.4011        | 34.0  | 578  | 0.3408          | 0.8465   |
| 0.4418        | 35.0  | 595  | 0.3159          | 0.8589   |
| 0.484         | 36.0  | 612  | 0.3130          | 0.8548   |
| 0.4119        | 37.0  | 629  | 0.2899          | 0.8589   |
| 0.4453        | 38.0  | 646  | 0.3200          | 0.8465   |
| 0.4074        | 39.0  | 663  | 0.3493          | 0.8465   |
| 0.3937        | 40.0  | 680  | 0.3003          | 0.8672   |
| 0.4222        | 41.0  | 697  | 0.3547          | 0.8299   |
| 0.3922        | 42.0  | 714  | 0.3206          | 0.8589   |
| 0.3973        | 43.0  | 731  | 0.4074          | 0.8133   |
| 0.4118        | 44.0  | 748  | 0.3147          | 0.8589   |
| 0.4088        | 45.0  | 765  | 0.3393          | 0.8506   |
| 0.3635        | 46.0  | 782  | 0.3584          | 0.8257   |
| 0.403         | 47.0  | 799  | 0.3240          | 0.8506   |
| 0.3943        | 48.0  | 816  | 0.3536          | 0.8216   |
| 0.4085        | 49.0  | 833  | 0.3270          | 0.8465   |
| 0.3865        | 50.0  | 850  | 0.3266          | 0.8465   |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1