--- license: mit base_model: microsoft/deberta-v3-large datasets: - imdb tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-large-imdb-v0.2 results: [] --- # deberta-v3-large-imdb-v0.2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [imdb](https://huggingface.co/datasets/stanfordnlp/imdb) dataset. It achieves the following results on the evaluation set @ epoch 9 of 10, which is loaded as the best model here: - Accuracy: 0.9656 - F1: 0.9657 - Precision: 0.9640 - Recall: 0.9673 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2279 | 1.0 | 3125 | 0.1466 | 0.9603 | 0.9599 | 0.9693 | 0.9506 | | 0.2689 | 2.0 | 6250 | 0.1929 | 0.9550 | 0.9546 | 0.9626 | 0.9467 | | 0.1728 | 3.0 | 9375 | 0.1807 | 0.9584 | 0.9579 | 0.9697 | 0.9463 | | 0.1937 | 4.0 | 12500 | 0.1734 | 0.9435 | 0.9457 | 0.9102 | 0.9841 | | 0.2044 | 5.0 | 15625 | 0.2102 | 0.9510 | 0.9523 | 0.9272 | 0.9788 | | 0.0484 | 6.0 | 18750 | 0.2134 | 0.9593 | 0.9599 | 0.9448 | 0.9756 | | 0.0336 | 7.0 | 21875 | 0.2278 | 0.9610 | 0.9614 | 0.9524 | 0.9706 | | 0.0704 | 8.0 | 25000 | 0.2039 | 0.9648 | 0.9651 | 0.9581 | 0.9721 | | 0.0004 | 9.0 | 28125 | 0.2241 | 0.9656 | 0.9657 | 0.9640 | 0.9673 | | 0.0004 | 10.0 | 31250 | 0.2233 | 0.9653 | 0.9654 | 0.9637 | 0.9670 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2