emilys commited on
Commit
a292ca1
·
verified ·
1 Parent(s): 6dc3346

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -19
README.md CHANGED
@@ -4,18 +4,21 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
-
 
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
 
15
 
16
- ## Usage (Sentence-Transformers)
17
 
18
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
19
 
20
  ```
21
  pip install -U sentence-transformers
@@ -32,16 +35,9 @@ embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
 
35
-
36
-
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
-
43
-
44
  ## Training
 
 
45
  The model was trained with the parameters:
46
 
47
  **DataLoader**:
@@ -81,8 +77,4 @@ SentenceTransformer(
81
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
  (2): Normalize()
83
  )
84
- ```
85
-
86
- ## Citing & Authors
87
-
88
- <!--- Describe where people can find more information -->
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ license: cc-by-2.0
8
+ language:
9
+ - en
10
  ---
11
 
12
+ # Same news story
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
+ This model is trained to maps news stories that contain similar content close to each other. It can be used to measure the distance between two news stories or cluster similar news stories together.
17
+
18
 
19
+ ## Usage
20
 
21
+ This model can be used with the [sentence-transformers](https://www.SBERT.net) package:
22
 
23
  ```
24
  pip install -U sentence-transformers
 
35
  print(embeddings)
36
  ```
37
 
 
 
 
 
 
 
 
 
 
38
  ## Training
39
+ This model was trained on data using news articles from Allsides, a news aggregator that collates articles on the same story from multiple news sites. We extract pairs of articles from these groupings and use these as positive pairs in our training data. For negative pairs, we use pairs that have a small cosine distance when evaluated with the untrained model, but do not come from the same story, and do not share the same topic tags, according to All Sides.
40
+
41
  The model was trained with the parameters:
42
 
43
  **DataLoader**:
 
77
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
78
  (2): Normalize()
79
  )
80
+ ```