--- library_name: transformers language: - ru - en base_model: - google/gemma-2-9b-it license: apache-2.0 pipeline_tag: text-generation --- # plato-9b `plato-9b` is a fine-tuned version of the [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) model for generating responses in the Russian language. This 9-billion parameter model excels at conversational tasks, offering rich contextual understanding and fine-grained results. ## Usage To use `plato-9b` with the `transformers` library: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepvk/plato-9b") model = AutoModelForCausalLM.from_pretrained("deepvk/plato-9b") input_text = "Что стоит посетить в России?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids output = model.generate(input_ids, max_length=150, do_sample=True, temperature=0.7) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) # Что стоит посетить в России? # 1. Красная площадь и Кремль в Москве # 2. Эрмитаж в Санкт-Петербурге # 3. Байкал # 4. Соловецкие острова # 5. Камчатка и её вулканы # 6. Золотое Кольцо # 7. Казанский Кремль # 8. Алтай # 9. Астраханская область и Волго-Донской канал # 10. Кавказские горы и Черноморское побережье # # Каждое из этих мест предлагает уникальные культурные, исторические и природные достопримечательности, # которые делают Россию столь удивительной и разнообразной страной. ``` ## Dataset We applied both Supervised Fine-Tuning (SFT) and Preference Optimization (PO). For SFT, we used an 8B token instruction dataset, with 4B tokens consisting of dialogues and the rest covering math, biology, chemistry, code, and general knowledge. The PO dataset contains 200M tokens featuring common knowledge instructions. We trained on both datasets for several epochs. ## Evaluation To evaluate, we applied LLM-as-a-judge approach on academic tasks. Specifically, we used `arena-general-ru` and `arena-hard-ru` with `gpt4o` judge and `gpt4o-mini` baseline. ### arena-general-ru | Model | Score | Score w/ SC | |-------------------------------------------------------------------------------|----------------------|----------------------| | gpt-4o-2024-11-20 | 81.87 (-2.04, +1.81) | 78.42 (-2.39, +2.33) | | gpt-4o-mini-2024-07-18 | 50.00 (-0.00, +0.00) | 50.00 (-0.00, +0.00) | | deepvk/plato-9b | 41.27 (-2.18, +2.24) | 32.13 (-1.97, +2.05) | | [t-tech/T-lite-it-1.0](https://huggingface.co/t-tech/T-lite-it-1.0) | 38.52 (-2.04, +2.98) | 30.38 (-1.90, +3.15) | | [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 27.46 (-2.06, +1.74) | 25.80 (-2.09, +1.98) | | [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | 24.60 (-2.36, +2.38) | 23.67 (-2.36, +2.28) | | [IlyaGusev/saiga_gemma2_9b](https://huggingface.co/IlyaGusev/saiga_gemma2_9b) | 17.83 (-1.95, +1.66) | 18.46 (-2.22, +1.69) | ### arena-hard-ru | Model | Score | Score w/ SC | |-------------------------------------------------------------------------------|----------------------|----------------------| | gpt-4o-2024-11-20 | 85.70 (-1.45, +1.38) | 80.19 (-1.99, +2.04) | | gpt-4o-mini-2024-07-18 | 50.00 (-0.00, +0.00) | 50.00 (-0.00, +0.00) | | [t-tech/T-lite-it-1.0](https://huggingface.co/t-tech/T-lite-it-1.0) | 34.80 (-1.98, +2.38) | 26.99 (-1.74, +2.67) | | deepvk/plato-9b | 31.81 (-1.92, +1.90) | 24.25 (-1.71, +1.84) | | [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) | 20.84 (-1.99, +1.67) | 17.70 (-1.63, +1.68) | | [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) | 12.98 (-1.36, +1.57) | 12.97 (-1.46, +1.69) | | [IlyaGusev/saiga_gemma2_9b](https://huggingface.co/IlyaGusev/saiga_gemma2_9b) | 9.72 (-1.34, +1.50) | 10.64 (-1.40, +1.78) | ## Citation Both authors contribute equally, order is alphabetical. ``` @misc{deepvk2024plato-9b, title={plato-9b}, author={Eliseev, Anton and Semin, Kirill}, url={https://huggingface.co/deepvk/plato-9b}, publisher={Hugging Face} year={2025}, } ```